Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jul;70(1):108–112. doi: 10.1104/pp.70.1.108

Involvement of Glyoxysomal Lipase in the Hydrolysis of Storage Triacylglycerols in the Cotyledons of Soybean Seedlings 1

Yon-Hui Lin 1, Robert A Moreau 1,2, Anthony H C Huang 1
PMCID: PMC1067095  PMID: 16662427

Abstract

The total cotyledon extract of soybean (Glycine max [L.] Merr. var. Coker 136) seedlings underwent lipolysis as measured by the release of fatty acids. The highest lipolytic activity occurred at pH 9. This lipolytic activity was absent in the dry seeds and increased after germination concomitant with the decrease in total lipids. Using spherosomes (lipid bodies) isolated from the cotyledons during the peak stage of lipolysis (5-7 days) as substrates, about 40% of the lipase activity was found in the glyoxysomes after organelle breakage had been accounted for; the remaining activity was distributed among other subcellular fractions but none was found in the spherosomal fraction. The glyoxysomal lipase had maximal activity at pH 9, and catalyzed the hydrolysis of tri-, di-, and monoacylglycerols of linoleic acid, the most abundant fatty acid in soybean. The spherosomes contained a neutral lipase that could hydrolyze monolinolein and N-methylindoxylmyristate, but not trilinolein. This spherosomal lipase activity dropped off rapidly during early seedling growth, preceding lipolysis. Spherosomes isolated from either dry or germinated seeds did not possess lipolytic activity, and spherosomes from germinated seeds but not from dry seeds could serve as substrates for the glyoxysomal lipase. It is concluded that the glyoxysomal lipase is the enzyme catalyzing the initial hydrolysis of storage triacylglycerols.

Full text

PDF
108

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Beevers H. Glyoxysomes of castor bean endosperm and their relation to gluconeogenesis. Ann N Y Acad Sci. 1969 Dec 19;168(2):313–324. doi: 10.1111/j.1749-6632.1969.tb43118.x. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Huang A. H. Comparative studies of glyoxysomes from various Fatty seedlings. Plant Physiol. 1975 May;55(5):870–874. doi: 10.1104/pp.55.5.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huang A. H., Moreau R. A., Liu K. D. Development and properties of a wax ester hydrolase in the cotyledons of jojoba seedlings. Plant Physiol. 1978 Mar;61(3):339–341. doi: 10.1104/pp.61.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hutton D., Stumpf P. K. Fat Metabolism in Higher Plants. XXXVII. Characterization of the beta-Oxidation Systems From Maturing and Germinating Castor Bean Seeds. Plant Physiol. 1969 Apr;44(4):508–516. doi: 10.1104/pp.44.4.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Moreau R. A., Huang A. H. Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Arch Biochem Biophys. 1979 May;194(2):422–430. doi: 10.1016/0003-9861(79)90636-2. [DOI] [PubMed] [Google Scholar]
  8. Moreau R. A., Liu K. D., Huang A. H. Spherosomes of Castor Bean Endosperm: MEMBRANE COMPONENTS, FORMATION, AND DEGRADATION. Plant Physiol. 1980 Jun;65(6):1176–1180. doi: 10.1104/pp.65.6.1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Muto S., Beevers H. Lipase Activities in Castor Bean Endosperm during Germination. Plant Physiol. 1974 Jul;54(1):23–28. doi: 10.1104/pp.54.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nixon M., Chan S. H. A simple and sensitive colorimetric method for the determination of long-chain free fatty acids in subcellular organelles. Anal Biochem. 1979 Sep 1;97(2):403–409. doi: 10.1016/0003-2697(79)90093-9. [DOI] [PubMed] [Google Scholar]
  11. ORY R. L., ST ANGELO A. J., ALTSCHUL A. M. Castor bean lipase: action on its endogenous substrate. J Lipid Res. 1960 Apr;1:208–213. [PubMed] [Google Scholar]
  12. Ory R. L., Yatsu L. Y., Kircher H. W. Association of lipase activity with the spherosomes of Ricinus communis. Arch Biochem Biophys. 1968 Feb;123(2):255–264. doi: 10.1016/0003-9861(68)90132-x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES