Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jul;70(1):162–167. doi: 10.1104/pp.70.1.162

Ethylene Biosynthesis and Cadmium Toxicity in Leaf Tissue of Beans (Phaseolus vulgaris L.) 1

JüRg Fuhrer 1,2
PMCID: PMC1067105  PMID: 16662438

Abstract

Stress ethylene production in bean (Phaseolus vulgaris L., cv. Taylor's Horticultural) leaf tissue was stimulated by Cd2+ at concentrations above 1 micromolar. Cd2+-induced ethylene biosynthesis was dependent upon synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase. Activity of ACC synthase and ethylene production rate peaked at 8 h of treatment. The subsequent decline in enzyme activity was most likely due to inactivation of the enzyme by Cd2+, which inhibited ACC synthase activity in vitro at concentrations as low as 0.1 micromolar. Decrease in ethylene production rate was accompanied by leakage of solutes and increasing inhibition of ACC-dependent ethylene production. Ca2+, present during a 2-hour preincubation, reduced the effect of Cd2+ on leakage and ACC conversion. This suggests that Cd2+ exerts its toxicity through membrane damage and inactivation of enzymes. The possibility of an indirect stimulation of ethylene biosynthesis through a wound signal from injured cells is discussed.

Full text

PDF
162

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles A. L. Biochemical Pathway of Stress-induced Ethylene. Plant Physiol. 1972 Oct;50(4):496–498. doi: 10.1104/pp.50.4.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams D. O., Yang S. F. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci U S A. 1979 Jan;76(1):170–174. doi: 10.1073/pnas.76.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Apelbaum A., Burgoon A. C., Anderson J. D., Lieberman M. Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol. 1981 Aug;68(2):453–456. doi: 10.1104/pp.68.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Apelbaum A., Burgoon A. C., Anderson J. D., Solomos T., Lieberman M. Some Characteristics of the System Converting 1-Aminocyclopropane-1-carboxylic Acid to Ethylene. Plant Physiol. 1981 Jan;67(1):80–84. doi: 10.1104/pp.67.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goren R., Siegel S. M. Mercury-induced Ethylene Formation and Abscission in Citrus and Coleus Explants. Plant Physiol. 1976 Apr;57(4):628–631. doi: 10.1104/pp.57.4.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lau O. L., Yang S. F. Inhibition of ethylene production by cobaltous ion. Plant Physiol. 1976 Jul;58(1):114–117. doi: 10.1104/pp.58.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lau O. L., Yang S. F. Stimulation of ethylene production in the mung bean hypocotyls by cupric ion, calcium ion, and kinetin. Plant Physiol. 1976 Jan;57(1):88–92. doi: 10.1104/pp.57.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leopold A. C., Musgrave M. E. Respiratory changes with chilling injury of soybeans. Plant Physiol. 1979 Nov;64(5):702–705. doi: 10.1104/pp.64.5.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lizada M. C., Yang S. F. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem. 1979 Nov 15;100(1):140–145. doi: 10.1016/0003-2697(79)90123-4. [DOI] [PubMed] [Google Scholar]
  10. Mattoo A. K., Lieberman M. Localization of the Ethylene-synthesizing System in Apple Tissue. Plant Physiol. 1977 Nov;60(5):794–799. doi: 10.1104/pp.60.5.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Peiser G. D., Yang S. F. Ethylene and Ethane Production from Sulfur Dioxide-injured Plants. Plant Physiol. 1979 Jan;63(1):142–145. doi: 10.1104/pp.63.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vallee B. L., Ulmer D. D. Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem. 1972;41(10):91–128. doi: 10.1146/annurev.bi.41.070172.000515. [DOI] [PubMed] [Google Scholar]
  13. Yu Y. B., Adams D. O., Yang S. F. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch Biochem Biophys. 1979 Nov;198(1):280–286. doi: 10.1016/0003-9861(79)90420-x. [DOI] [PubMed] [Google Scholar]
  14. Yu Y. B., Adams D. O., Yang S. F. Inhibition of ethylene production by 2,4-dinitrophenol and high temperature. Plant Physiol. 1980 Aug;66(2):286–290. doi: 10.1104/pp.66.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yu Y. B., Yang S. F. Auxin-induced Ethylene Production and Its Inhibition by Aminoethyoxyvinylglycine and Cobalt Ion. Plant Physiol. 1979 Dec;64(6):1074–1077. doi: 10.1104/pp.64.6.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yu Y. B., Yang S. F. Biosynthesis of wound ethylene. Plant Physiol. 1980 Aug;66(2):281–285. doi: 10.1104/pp.66.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. de Laat A. M., van Loon L. C. Regulation of Ethylene Biosynthesis in Virus-Infected Tobacco Leaves : I. DETERMINATION OF THE ROLE OF METHIONINE AS THE PRECURSOR OF ETHYLENE. Plant Physiol. 1981 Jul;68(1):256–260. doi: 10.1104/pp.68.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES