Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jul;70(1):206–210. doi: 10.1104/pp.70.1.206

Regulation by Lipids of Plant Microsomal Enzymes

III. Phospholipid Dependence of the Cytidine-Diphospho-Choline Phosphotransferase of Potato Microsomes

Alain Jolliot 1, Anne-Marie Justin 1, Evelyne Bimont 1, Paul Mazliak 1
PMCID: PMC1067113  PMID: 16662446

Abstract

Cytidine-diphospho-choline diacyl-glycerol phosphorylcholine phosphotransferase activity was demonstrated in potato (Solanum tuberosum L.) microsomes and the incorporation of cytidine-diphospho[14C]choline into phosphatidylcholine was characterized by the time course of 14C incorporation and the effect of microsomal protein concentration on choline incorporation.

Potato microsomes were progressively delipidated by treatments (2 min at 0°C) with increasing amounts of phospholipase C from Bacillus cereus. A decrease in choline phosphotransferase activity was observed in parallel with the progressive hydrolysis of membrane phospholipids. A 70% (or more) phospholipid hydrolysis provoked the total inactivation of the enzyme.

Adding back exogenous phospholipids (in the form of liposomes) to phospholipase C-treated membranes restored the enzymic activity. Restoration could be obtained with egg yolk phospholipids as well as with potato phospholipids. Restoration was time dependent and completed after 10 minutes; restoration was also dependent on the quantity of liposomes added to lipid-depleted membranes: the best restorations were obtained with 1 to 2.5 milligrams of phospholipid per mg of microsomal protein; higher phospholipid to protein ratios were less efficient or inhibitory.

These results clearly demonstrate the phospholipid dependence of the cytidine-diphospho-choline phosphotransferase from potato microsomes.

Full text

PDF
206

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelkader A. B., Mazliak P. Echanges de lipides entre mitochondries, microsomes et surnageant cytoplasmique de cellules de pomme de terre ou de chou-fleur. Eur J Biochem. 1970 Aug;15(2):250–262. doi: 10.1111/j.1432-1033.1970.tb01002.x. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Cocucci M., Ballarin-Denti A. Effect of polar lipids on ATPase activity of membrane preparations from germinating radish seeds. Plant Physiol. 1981 Aug;68(2):377–381. doi: 10.1104/pp.68.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Devor K. A., Mudd J. B. Biosynthesis of phosphatidylcholine by enzyme preparations from spinach leaves. J Lipid Res. 1971 Jul;12(4):403–411. [PubMed] [Google Scholar]
  5. FLEISCHER S., BRIERLEY G., KLOUWEN H., SLAUTTERBACK D. B. Studies of the electron transfer system. 47. The role of phospholipids in electron transfer. J Biol Chem. 1962 Oct;237:3264–3272. [PubMed] [Google Scholar]
  6. Freysz L., Horrocks L. A., Mandel P. Effects of deoxycholate and phospholipase A2 on choline and ethanolamine phosphotransferases of chicken brain microsomes. Biochim Biophys Acta. 1977 Dec 21;489(3):431–439. doi: 10.1016/0005-2760(77)90164-3. [DOI] [PubMed] [Google Scholar]
  7. Jolliot A., Demandre C., Mazliak P. Regulation by Lipids of Plant Microsomal Enzymes: II. LIPID DEPENDENCE OF THE NADH-CYTOCHROME c REDUCTASE OF POTATO TUBERS. Plant Physiol. 1981 Jan;67(1):9–11. doi: 10.1104/pp.67.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jolliot A., Demandre C., Mazliak P. Rôle des lipides dans le fonctionnement des chaînes de transport d'électrons de microsomes de Pomme de terre. Biochimie. 1978;60(8):767–775. doi: 10.1016/s0300-9084(78)80021-2. [DOI] [PubMed] [Google Scholar]
  9. Jolliot A., Mazliak P. Lipides membranaires et transferts d'électrons. Effets de quatre détergents sur les activitiés NADH-ferricyanure réductase et NADH-cytochrome c réductase de microsomes isolés du tubercule de Pomme de terre. C R Acad Sci Hebd Seances Acad Sci D. 1977 Oct 17;285(9):973–976. [PubMed] [Google Scholar]
  10. KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
  11. Lepage M. Identification and composition of turnip root lipids. Lipids. 1967 May;2(3):244–250. doi: 10.1007/BF02532563. [DOI] [PubMed] [Google Scholar]
  12. Montague M. J., Ray P. M. Phospholipid-synthesizing Enzymes Associated with Golgi Dictyosomes from Pea Tissue. Plant Physiol. 1977 Feb;59(2):225–230. doi: 10.1104/pp.59.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moore T. S. Phosphatidylcholine synthesis in castor bean endosperm. Plant Physiol. 1976 Mar;57(3):382–386. doi: 10.1104/pp.57.3.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morimoto K., Kanoh H. Effect of phospholipase A2 on rat liver microsomal diacylglycerol cholinephosphotransferase, diacylglycerol ethanolaminephosphotransferase and diacylglycerol acyltransferase. Biochim Biophys Acta. 1978 Oct 25;531(1):16–24. [PubMed] [Google Scholar]
  15. Sparace S. A., Moore T. S. Phospholipid Metabolism in Plant Mitochondria: II. SUBMITOCHONDRIAL SITES OF SYNTHESIS OF PHOSPHATIDYLCHOLINE AND PHOSPHATIDYLETHANOLAMINE. Plant Physiol. 1981 Feb;67(2):261–265. doi: 10.1104/pp.67.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tanaka Y., Doi O., Akamatsu Y. Solubilization and properties of a phosphatidylethanolamine-dependent methyltransferase system for phosphatidylcholine synthesis from mouse liver microsomes. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1109–1115. doi: 10.1016/s0006-291x(79)80022-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES