Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Aug;70(2):357–360. doi: 10.1104/pp.70.2.357

Biological Properties of d-Amino Acid Conjugates of 2,4-D 1

Gayle H Davidonis 1,2, Robert H Hamilton 1,2, Remo P Vallejo 1,2, Robert Buly 1,2, Ralph O Mumma 1,2
PMCID: PMC1067149  PMID: 16662495

Abstract

Some d-amino acid (glutamic acid, valine, or leucine) conjugates of 2,4-dichlorophenoxyacetic acid (2,4-D) at 10−5 molar, stimulated elongation of Avena sativa L. var Mariner coleoptile sections and growth of soybean (Glycine max. L. var Amsoy) tissue as much as did the l-amino acid conjugates at 10−6 molar. The d-methionine conjugate did not stimulate growth of soybean root callus tissue but did stimulate Avena elongation. The d-aspartic acid conjugate did not stimulate elongation of Avena coleoptiles but did stimulate growth of root callus tissue.

Pretreatment of root callus tissue with 100 micromolar 2,4-D-(d) -or (l) glutamic acid for 18 hours prior to incubation for 6 hours in [1-14C]2,4-D resulted in a greater uptake of [1-14C]2,4-D than did pretreatment with 2,4-d. Qualitatively the metabolites were similar in all preincubation treatments. Preincubation with 2,4-D-(d)-glutamic acid also resulted in larger free [14C]2,4-D pool and a significant increase in water-soluble conjugates when compared with 2,4-D, or 2,4-D-(l)-glutamic acid preincubations.

Full text

PDF
357

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandurski R. S., Schulze A. Concentration of Indole-3-acetic Acid and Its Derivatives in Plants. Plant Physiol. 1977 Aug;60(2):211–213. doi: 10.1104/pp.60.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behrend J., Mateles R. I. Nitrogen metabolism in plant cell suspension cultures: I. Effect of amino acids on growth. Plant Physiol. 1975 Nov;56(5):584–589. doi: 10.1104/pp.56.5.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davidonis G. H., Hamilton R. H., Mumma R. O. Comparative metabolism of 2,4-dichlorophenoxyacetic Acid in cotyledon and leaf callus from two varieties of soybean. Plant Physiol. 1980 Jan;65(1):94–97. doi: 10.1104/pp.65.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davidonis G. H., Hamilton R. H., Mumma R. O. Metabolism of 2,4-Dichlorophenoxyacetic Acid (2,4-D) in Soybean Root Callus : EVIDENCE FOR THE CONVERSION OF 2,4-D AMINO ACID CONJUGATES TO FREE 2,4-D. Plant Physiol. 1980 Oct;66(4):537–540. doi: 10.1104/pp.66.4.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davidonis G. H., Hamilton R. H., Mumma R. O. Metabolism of 2,4-dichlorophenoxyacetic Acid in soybean root callus and differentiated soybean root cultures as a function of concentration and tissue age. Plant Physiol. 1978 Jul;62(1):80–83. doi: 10.1104/pp.62.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feung C. S., Hamilton R. H., Mumma R. O. Metabolism of Indole-3-acetic Acid: IV. Biological Properties of Amino Acid Conjugates. Plant Physiol. 1977 Jan;59(1):91–93. doi: 10.1104/pp.59.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feung C. S., Hamilton R. H., Witham F. H., Mumma R. O. The relative amounts and identification of some 2,4-dichlorophenoxyacetic Acid metabolites isolated from soybean cotyledon callus cultures. Plant Physiol. 1972 Jul;50(1):80–86. doi: 10.1104/pp.50.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feung C., Hamilton R. H., Mumma R. O. Metabolism of 2,4-dichlorophenoxyacetic acid. IV. Mass spectra and chromatographic properties of amino acid conjugates.. J Agric Food Chem. 1973 Jul-Aug;21(4):632–637. doi: 10.1021/jf60188a054. [DOI] [PubMed] [Google Scholar]
  9. Feung C., Hamilton R. H., Mumma R. O. Metabolism of 2,4-dichlorophenoxyacetic acid. V. Identification of metabolites in soybean callus tissue cultures. J Agric Food Chem. 1973 Jul-Aug;21(4):637–640. doi: 10.1021/jf60188a058. [DOI] [PubMed] [Google Scholar]
  10. Gamborg O. L. The effects of amino acids and ammonium on the growth of plant cells in suspension culture. Plant Physiol. 1970 Apr;45(4):372–375. doi: 10.1104/pp.45.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hangarter R. P., Peterson M. D., Good N. E. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture. Plant Physiol. 1980 May;65(5):761–767. doi: 10.1104/pp.65.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Montague M. J., Enns R. K., Siegel N. R., Jaworski E. G. A comparison of 2,4-dichlorophenoxyacetic Acid metabolism in cultured soybean cells and in embryogenic carrot cells. Plant Physiol. 1981 Apr;67(4):603–607. doi: 10.1104/pp.67.4.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Triplett E. W., Heitholt J. J., Evensen K. B., Blevins D. G. Increase in Internode Length of Phaseolus lunatus L. Caused by Inoculation with a Nitrate Reductase-deficient Strain of Rhizobium sp. Plant Physiol. 1981 Jan;67(1):1–4. doi: 10.1104/pp.67.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES