Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Aug;70(2):511–516. doi: 10.1104/pp.70.2.511

Citrate Transport in Corn Mitochondria 1

Paul R Birnberg 1, Deborah L Jayroe 1, John B Hanson 1
PMCID: PMC1067179  PMID: 16662525

Abstract

Citrate uptake by corn mitochondria (Zea mays L. B73 × Mol9) was investigated by osmotic swelling and [14C]citrate accumulation. Uptake driven by passive influx, ammonium gradients, and respiration was followed. There was no requirement for phosphate and/or malate to secure citrate uptake, although under some conditions these additives were promotive. Inhibition of the phosphate and dicarboxylate carriers did not eliminate citrate uptake. Citratein/malateout exchange occurs, but at a rate too slow to account for observed citrate uptake, and depletion of endogenous malate only reduced citrate uptake by 38%. It was concluded that citrate can be rapidly accumulated by a mechanism other than by exchange for dicarboxylates. The effect of uncoupler on respiration-driven [14C]citrate accumulation, and studies of passive swelling using ionophores and uncouplers indicated that the major avenue of citrate uptake is by H+/citrate co-transport with a pH optimum near 4.5. The in vivo role of this mechanism is not yet understood.

Full text

PDF
511

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abou-Khalil S., Hanson J. B. Net adenosine diphosphate accumulation in mitochondria. Arch Biochem Biophys. 1977 Oct;183(2):581–587. doi: 10.1016/0003-9861(77)90393-9. [DOI] [PubMed] [Google Scholar]
  2. Atkinson D. E. Citrate and the citrate cycle in the regulation of energy metabolism. Biochem Soc Symp. 1968;27:23–40. [PubMed] [Google Scholar]
  3. Bowman E. J., Ikuma H., Stein H. J. Citric Acid cycle activity in mitochondria isolated from mung bean hypocotyls. Plant Physiol. 1976 Sep;58(3):426–432. doi: 10.1104/pp.58.3.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Day D. A., Hanson J. B. Effect of phosphate and uncouplers on substrate transport and oxidation by isolated corn mitochondria. Plant Physiol. 1977 Feb;59(2):139–144. doi: 10.1104/pp.59.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Day D. A., Wiskich J. T. Effect of phthalonic acid on respiration and metabolite transport in higher plant mitochondria. Arch Biochem Biophys. 1981 Oct 1;211(1):100–107. doi: 10.1016/0003-9861(81)90434-3. [DOI] [PubMed] [Google Scholar]
  6. Fluegel M. J., Hanson J. B. Mechanisms of passive potassium influx in corn mitochondria. Plant Physiol. 1981 Aug;68(2):267–271. doi: 10.1104/pp.68.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gonzalez E., Beevers H. Role of the endoplasmic reticulum in glyoxysome formation in castor bean endosperm. Plant Physiol. 1976 Mar;57(3):406–409. doi: 10.1104/pp.57.3.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hanson J. B., Bertagnolli B. L., Shepherd W. D. Phosphate-induced Stimulation of Acceptorless Respiration in Corn Mitochondria. Plant Physiol. 1972 Sep;50(3):347–354. doi: 10.1104/pp.50.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huber S. C., Moreland D. E. Permeability Properties of the Inner Membrane of Mung Bean Mitochondria and Changes during Energization. Plant Physiol. 1979 Jul;64(1):115–119. doi: 10.1104/pp.64.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jung D. W., Laties G. G. Citrate and succinate uptake by potato mitochondria. Plant Physiol. 1979 Apr;63(4):591–597. doi: 10.1104/pp.63.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kagawa T. Organelle-specific isozymes of citrate synthase in the endosperm of developing ricinus seedlings. Plant Physiol. 1981 Oct;68(4):845–850. doi: 10.1104/pp.68.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kimpel J. A., Hanson J. B. Activation of endogenous respiration and anion transport in corn mitochondria by acidification of the medium. Plant Physiol. 1977 Dec;60(6):933–934. doi: 10.1104/pp.60.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. LaNoue K. F., Schoolwerth A. C. Metabolite transport in mitochondria. Annu Rev Biochem. 1979;48:871–922. doi: 10.1146/annurev.bi.48.070179.004255. [DOI] [PubMed] [Google Scholar]
  15. Max S. R., Purvis J. L. Energy-linked incorporation of citrate into rat liver mitochondria. Biochem Biophys Res Commun. 1965 Dec 21;21(6):587–594. doi: 10.1016/0006-291x(65)90526-7. [DOI] [PubMed] [Google Scholar]
  16. Papa S., Lofrumento N. E., Kanduc D., Paradies G., Quagliariello E. The transport of citric-acid-cycle intermediates in rat-liver mitochondria. Electrical nature and coupling of the exchange-diffusion reactions with proton translocation. Eur J Biochem. 1971 Sep 13;22(1):134–143. doi: 10.1111/j.1432-1033.1971.tb01524.x. [DOI] [PubMed] [Google Scholar]
  17. Phillips M. L., Williams G. R. Anion transporters in plant mitochondria. Plant Physiol. 1973 Apr;51(4):667–670. doi: 10.1104/pp.51.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Scott K. M., Knight V. A., Settlemire C. T., Brierley G. P. Differential effects of mercurial reagents on membrane thiols and on the permeability of the heart mitochondrion. Biochemistry. 1970 Feb 17;9(4):714–724. doi: 10.1021/bi00806a003. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES