Skip to main content
Chinese Journal of Hematology logoLink to Chinese Journal of Hematology
. 2023 Oct;44(10):820–824. [Article in Chinese] doi: 10.3760/cma.j.issn.0253-2727.2023.10.005

表达IL7和CCL19的第四代CD19 CAR-T联合PD-1单抗治疗复发难治大B细胞淋巴瘤的疗效和安全性

Efficacy and safety of fourth-generation CD19 CAR-T expressing IL7 and CCL19 along with PD-1 monoclonal antibody for relapsed or refractory large B-cell lymphoma

Teng Yu 1, Hui Liu 1, Wen Lei 1, Panpan Chen 1, Aiqi Zhao 1, Xianggui Yuan 1, Jimin Gao 2, Wenbin Qian 1,
Editor: 杨 津津
PMCID: PMC10694076  PMID: 38049333

Abstract

Objective

This study systematically explore the efficacy and safety of fourth-generation chimeric antigen receptor T-cells(CAR-T), which express interleukin 7(IL7)and chemokine C-C motif ligand 19(CCL19)and target CD19, in relapsed or refractory large B-cell lymphoma.

Methods

Our center applied autologous 7×19 CAR-T combined with tirelizumab to treat 11 patients with relapsed or refractory large B-cell lymphoma. The efficacy and adverse effects were explored.

Results

All 11 enrolled patients completed autologous 7×19 CAR-T preparation and infusion. Nine patients completed the scheduled six sessions of tirolizumab treatment, one completed four sessions, and one completed one session. Furthermore, five cases(45.5%)achieved complete remission, and three cases(27.3%)achieved partial remission with an objective remission rate of 72.7%. Two cases were evaluated for disease progression, and one died two months after reinfusion because of uncontrollable disease. The median follow-up time was 31(2−34)months, with a median overall survival not achieved and a median progression-free survival of 28(1−34)months. Two patients with partial remission achieved complete remission at the 9th and 12th months of follow-up. Therefore, the best complete remission rate was 63.6%. Cytokine-release syndrome and immune effector cell-associated neurotoxicity syndrome were controllable, and no immune-related adverse reactions occurred.

Conclusion

Autologous 7×19 CAR-T combined with tirelizumab for treating relapsed or refractory large B-cell lymphoma achieved good efficacy with controllable adverse reactions.

Keywords: Chimeric antigen receptor T cells, Large B-cell lymphoma, Immune checkpoint inhibitor, Immune related adverse reaction


第四代嵌合抗原受体T(CAR-T)细胞表达免疫刺激细胞因子如白细胞介素7(IL7)、IL15或IL12等,以及趋化因子如趋化因子C-C基序配体19(C-C motif chemokine ligand 19,CCL19)等,能够提升CAR-T持久性、对肿瘤细胞靶向性和杀伤能力,因此又称装甲化CAR-T[1][4]。我们团队构建以CD19为靶点,共表达IL7和CCL19的第四代CAR-T,将其命名为7×19 CAR-T,注册Ⅰb期多中心临床试验,结果表明其在复发难治大B细胞淋巴瘤治疗中具有较好安全性和疗效,但仍有部分患者复发或难治,部分原因可能是淋巴瘤微环境(lymphoma microenvironment, LME)免疫检查点抑制,而程序性死亡受体1(PD-1)及其配体上调也在CAR-T耗竭中发挥了重要作用[5][6]。以PD-1单抗阻断免疫检查点提高CAR-T疗效,已经在临床前研究和个案中展现出应用前景,但两者联合方式缺乏系统性研究,是否会引发严重细胞因子释放综合征(CRS)、免疫效应细胞相关神经毒性综合征(ICANS)或引发额外的免疫相关不良反应(immune-related adverse event, irAE)也需进一步探索[7][8]。故在本研究中,本中心应用自体7×19 CAR-T联合替雷利珠单抗(一种人源化IgG4抗PD-1单克隆抗体)治疗复发难治大B细胞淋巴瘤患者,现就其有效性和安全性报道如下。

病例与方法

1. 病例资料:纳入2020年7月至2021年5月于浙江大学医学院附属第二医院进行7×19 CAR-T联合替雷利珠单抗治疗的复发难治大B细胞淋巴瘤患者11例。所有患者在入组前均接受过2线以上治疗,疾病复发或难治,并存在可评估病灶,美国东部肿瘤协作组(ECOG)体能状态评分0~3分,合并慢性乙型病毒性肝炎患者需接受抗乙肝病毒治疗且乙肝病毒DNA检测阴性,其余入排标准同ZUMA-1研究[9]。本研究经浙江大学医学院附属第二医院伦理委员会批准,批件号:(2021)伦审研第(0531)号,所有患者均充分知情并签署知情同意书。

2. CAR-T制备及回输:本研究所用的7×19 CAR-T为第四代CAR-T,以4-1BB为共刺激分子,并含有IL7和CCL19表达序列,均由本中心专职人员负责制备,制备过程在符合GMP标准的实验室完成。制备的基本流程如下:患者签署知情同意书后,采集外周血T淋巴细胞,在体外通过慢病毒载体将CAR片段转导入T细胞,中位转导率为30%(7%~58%)。在CAR-T输注前给予氟达拉滨联合环磷酰胺方案清淋预处理化疗,具体剂量为氟达拉滨30 mg·m−2·d−1,环磷酰胺500 mg·m−2·d−1,均为−5 d~−3 d连续3 d给药;替雷利珠单抗在CAR-T回输后31 d开始,每21 d静脉滴注给药1次,每次200 mg共计6次,具体流程见图1

图1. 自体7×19 CAR-T联合替雷利珠单抗治疗复发难治大B细胞淋巴瘤流程图.

图1

注 FC:氟达拉滨联合环磷酰胺

3. 疗效评估:CAR-T回输后90 d行全身PET-CT评估疗效,根据Lugano淋巴瘤疗效评价标准执行,分为完全缓解(CR)、部分缓解(PR)、疾病稳定(SD)和疾病进展(PD),客观缓解率(ORR)定义为CR率+PR率[10]。同时评估最佳CR(best complete response,bCR),bCR率定义为在长期随访中获得的最佳疗效为CR的比例。

4. 不良反应评估:不良反应重点关注CRS和ICANS,按照美国移植与细胞治疗学会(American society for transplantation and cellular therapy,ASTCT)共识进行分级[11]。而长期随访中irAE根据美国卫生和公共服务部发布的常见不良反应术语评定标准(CTCAE)5.0进行分级和管理。

5. 随访:通过门诊或住院复查,以B超及CT作为定期疗效评估手段,随访时间截至2023年7月1日。总生存(OS)时间定义为CAR-T回输时间至任何原因导致死亡;去进展生存(PFS)时间定义为CAR-T回输时间至疾病进展或死亡。

6. 统计学处理:应用IBM SPSS 20版本软件进行统计学分析。计数资料以例数(百分比)表示,计量资料以M(范围)表示,通过Kaplan-Meier生存分析计算OS及PFS;通过Reverse Kaplan-Meier法计算中位随访时间。

结果

1. 一般临床特征:共纳入11例复发难治患者,其中男9例,女2例,中位年龄50(40~70)岁。弥漫大B细胞淋巴瘤(DLBCL)9例(其中含EB病毒阳性DLBCL 1例),转化滤泡性淋巴瘤(transformed follicular lymphoma,TFL)1例,伴有MYC和BCL2重排的高级别B细胞淋巴瘤(high-grade B-cell lymphoma,HGBL)1例。患者既往接受治疗中位线数为3(2~6)线,接受治疗中位次数为11(5~33)次。2例患者接受过自体造血干细胞移植,1例患者接受累及野放射治疗,7例患者接受BTK抑制剂治疗,2例患者接受BCL2抑制剂维奈克拉治疗。其余各项临床特征详见表1

表1. 11例复发难治弥漫大B细胞淋巴瘤患者的临床特征.

临床特征 例数 构成比(%)
性别
 男 9 81.8
 女 2 18.2
年龄
 ≤60岁 8 72.7
 >60岁 3 27.3
诊断
 DLBCL 9 81.8
 TFL 1 9.1
 HGBL 1 9.1
B症状
 存在 3 27.3
 不存在 8 72.7
ECOG体能状态评分
 0~1 6 54.5
 2~3 5 45.5
Ann Arbor分期
 Ⅰ~Ⅱ期 6 54.5
 Ⅲ~Ⅳ期 5 45.5
结外受累
 ≤1处 8 72.7
 >1处 3 27.3
乳酸脱氢酶
 正常 1 9.1
 升高 10 90.9
疾病状态
 难治 9 81.8
 复发 2 18.2
IPI评分
 0~1 3 27.3
 2 3 27.3
 3 2 18.2
 4~5 3 27.3
既往化疗
 2线 1 9.1
 3线 5 45.5
 4线 2 18.2
 5线及以上 3 27.3

注 DLBCL:弥漫大B细胞淋巴瘤;TFL:转化滤泡性淋巴瘤;HGBL:高级别B细胞淋巴瘤;IPI:国际预后指数;ECOG:美国东部肿瘤协作组

2. 7×19 CAR-T治疗:从细胞采集到7×19 CAR-T回输的中位时间为14(12~15)d,期间2例患者接受糖皮质激素作为桥接治疗。中位回输剂量为2(1~3)×106/kg。9例患者完成预定的6次替雷利珠单抗治疗,1例患者完成4次,1例患者完成1次,均因疾病进展提前终止PD-1单抗治疗。CAR-T回输后90 d全身PET-CT评估提示,5例(45.5%)达CR,3例(27.3%)达PR,ORR为72.7%。2例经PET-CT评估为PD,1例在回输后2个月因疾病不能控制而死亡。中位随访时间31(2~34)个月,中位OS时间未达到,中位PFS时间为28(1~34)个月,2例PR患者分别在随访第9个月和第12个月进一步获得CR,故bCR率为63.6%,详见图2

图2. 11例接受表达IL7和CCL19的CD19 CAR-T联合替雷利珠单抗治疗的复发难治大B细胞淋巴瘤患者生存情况.

图2

3. 不良反应:11例入组患者输注CAR-T后10例患者发生不同程度CRS反应,出现CRS的中位时间为输注后第2(1~8)d,其中1级CRS 3例,仅表现为发热,以补液和对症处理后好转,2级CRS 5例,3级CRS 2例,表现为发热、低血压或低氧血症,通过托珠单抗及糖皮质激素治疗好转,CRS中位持续时间为10.5(4~14)d。2例患者发生1级ICANS,表现为头痛,1例患者经评估达到3级ICANS,表现为头痛、定向力下降、语言能力和书写能力下降,经糖皮质激素应用和对症处理后好转。后续随访中未见irAE事件发生。

讨论

第四代7×19 CAR-T治疗复发难治大B细胞淋巴瘤,本中心已经注册Ⅰb期多中心临床试验,入组39例复发难治大B细胞淋巴瘤,3个月PET-CT疗效评估提示ORR为79.5%,其中CR率56.4%,中位随访时间32个月,中位PFS时间为13个月,中位OS时间未到达。尽管7×19 CAR-T通过改进 CAR-T 扩增和促进肿瘤组织浸润的机制,较第二代 CAR-T 的疗效有所提高,但仍有部分患者复发或难治,可能与CAR-T耗竭或肿瘤微环境抑制因素等有关[5]

肿瘤微环境免疫检查点信号紊乱,尤其PD-1及其配体,抑制CAR-T杀伤能力,诱导CAR-T耗竭,从而导致CAR-T治疗失败。有研究表明,PD-1过表达T细胞所制备的CAR-T抗肿瘤免疫反应差[12]。JULIET研究显示,PD-1与其配体相互作用评分较高的DLBCL患者接受CAR-T治疗无效,或在缓解后短时间内复发[13]。为克服PD-1信号通路紊乱,通过阻断PD-1以提升CAR-T疗效成为研究的热点。国内学者研究揭示,PD-1单抗治疗有助于共刺激域为4-1BB的CD8+ CAR-T细胞向中心记忆型细胞定向分化,促进CAR-T在体内维持和长期抗肿瘤作用[14]。另有学者构建表达PD-1阻断蛋白的CAR-T,通过体外实验和动物实验证明其能逆转肿瘤细胞对CAR-T的耐药[15]

因此本研究应用替雷利珠单抗,阻断PD-1信号通路,以此联合自体7×19 CAR-T治疗复发难治大B细胞淋巴瘤患者,探索安全性和有效性。CAR-T回输后90 d全身PET-CT评估提示,ORR为72.7%,CR率为45.5%,2例PR患者分别在随访第9个月和第12个月进一步获得CR,故bCR率为63.6%,对照既往单用自体7×19 CAR-T的研究未见短期疗效显著提升。分析原因在于较既往单用研究,本研究入组患者治疗更为后线,且接受BTK抑制剂、BCL2抑制剂等靶向治疗的比例更高;有2例患者因疾病进展而没有完成既定的6次替雷利珠单抗治疗,这也是部分原因。进一步随访发现,中位随访时间31个月,中位OS时间未达到,中位PFS时间为28个月,较既往单用研究,在相似的中位随访时间里,观察到中位PFS的大幅度改善。且值得关注的是,2例3个月疗效评估为PR的患者,在完成全部6次替雷利珠单抗单抗,未使用其他治疗的情况下,分别在随访第9个月和第12个月进一步获得CR,使本研究bCR率提升至63.6%,提示阻断PD-1信号通路可能有助于提升CAR-T疗效。

本研究也表明CRS和ICANS可逆,远期随访也未见irAE发生,提示联合治疗安全性可控。但仍有部分患者在获得CR后出现疾病再次进展和复发,虽然后续通过更换新靶点CAR-T或维泊妥珠单抗等新的治疗,进一步延长了生存,但也提示单独阻断PD-1信号通路可能仍不足以逆转CAR-T难治或耐药,亟须新的联合策略,比如BCL2抑制剂或BTK抑制剂联合策略等[16]

近期研究也表明,肿瘤微环境中CAR-T的抑制性因素并不局限于PD-1信号通路,包括T细胞免疫球蛋白黏蛋白分子3(T cell immunoglobulin and mucin-containing molecule 3, TIM-3)、淋巴细胞激活基因(lymphocyte activation gene 3, LAG3)和T细胞免疫球蛋白和ITIM结构域(T cell immunoreceptor with Ig and ITIM domain, TIGIT)等免疫检查点均对CAR-T发挥负调控效应[17]。因此在未来,对多种免疫检查点实施联合阻断策略也是一种极具潜力的CAR-T疗效提升方法。

总之,自体7×19 CAR-T联合替雷利珠单抗治疗复发难治大B细胞淋巴瘤具有较好的安全性和疗效。但由于研究样本有限,有待进一步扩大样本量,延长随访时间以提供更充足证据。

Funding Statement

基金项目:国家自然科学基金面上项目(82170219);浙江省医学会临床医学科研专项(2022ZYC-Z21)

Fund program: National Natural Science Foundation of China(82170219); Clinical Medical Research Project of Zhejiang Medical Association(2022ZYC-Z21)

Footnotes

利益冲突 所有作者声明无利益冲突。

作者贡献声明 俞腾、刘辉、雷文:采集、分析数据,起草文章;高基民、钱文斌:研究设计及实施,文章审核;其他作者:协助研究

临床试验注册:ClinicalTrials, NCT04381741

Trail Registration: ClinicalTrials, NCT04381741

References

  • 1.Kueberuwa G, Kalaitsidou M, Cheadle E, et al. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity[J] Mol Ther Oncolytics. 2018;8:41–51. doi: 10.1016/j.omto.2017.12.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Hu B, Ren J, Luo Y, et al. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18[J] Cell Rep. 2017;20(13):3025–3033. doi: 10.1016/j.celrep.2017.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Batra SA, Rathi P, Guo L, et al. Glypican-3-Specific CAR T Cells Coexpressing IL15 and IL21 Have Superior Expansion and Antitumor Activity against Hepatocellular Carcinoma[J] Cancer Immunol Res. 2020;8(3):309–320. doi: 10.1158/2326-6066.CIR-19-0293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Adachi K, Kano Y, Nagai T, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor[J] Nat Biotechnol. 2018;36(4):346–351. doi: 10.1038/nbt.4086. [DOI] [PubMed] [Google Scholar]
  • 5.Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy[J] Nat Rev Clin Oncol. 2019;16(6):372–385. doi: 10.1038/s41571-019-0184-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Trujillo JA, Godfrey J, Hu Y, et al. Primary resistance to CD19-directed chimeric antigen receptor T-cell therapy in T-cell/histiocyte-rich large B-cell lymphoma[J] Blood. 2021;137(24):3454–3459. doi: 10.1182/blood.2020009148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Chong EA, Melenhorst JJ, Lacey SF, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR[J] Blood. 2017;129(8):1039–1041. doi: 10.1182/blood-2016-09-738245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Zhang R, Deng Q, Jiang YY, et al. Effect and changes in PD1 expression of CD19 CART cells from T cells highly expressing PD1 combined with reduceddose PD1 inhibitor[J] Oncol Rep. 2019;41(6):3455–3463. doi: 10.3892/or.2019.7096. [DOI] [PubMed] [Google Scholar]
  • 9.Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma[J] Mol Ther. 2017;25(1):285–295. doi: 10.1016/j.ymthe.2016.10.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification[J] J Clin Oncol. 2014;32(27):3059–3068. doi: 10.1200/JCO.2013.54.8800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lee DW, Santomasso BD, Locke FL, et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells[J] Biol Blood Marrow Transplant. 2019;25(4):625–638. doi: 10.1016/j.bbmt.2018.12.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Li S, Siriwon N, Zhang X, et al. Enhanced Cancer Immunotherapy by Chimeric Antigen Receptor-Modified T Cells Engineered to Secrete Checkpoint Inhibitors[J] Clin Cancer Res. 2017;23(22):6982–6992. doi: 10.1158/1078-0432.CCR-17-0867. [DOI] [PubMed] [Google Scholar]
  • 13.Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma[J] N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980. [DOI] [PubMed] [Google Scholar]
  • 14.Li F, Zhang Z, Xuan Y, et al. PD-1 abrogates the prolonged persistence of CD8(+) CAR-T cells with 4-1BB co-stimulation[J] Signal Transduct Target Ther. 2020;5(1):164. doi: 10.1038/s41392-020-00277-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Cherkassky L, Morello A, Villena-Vargas J, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition[J] J Clin Invest. 2016;126(8):3130–3144. doi: 10.1172/JCI83092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Mohty R, Gauthier J. Current combinatorial CAR T cell strategies with Bruton tyrosine kinase inhibitors and immune checkpoint inhibitors[J] Bone Marrow Transplant. 2021;56(11):2630–2636. doi: 10.1038/s41409-021-01420-9. [DOI] [PubMed] [Google Scholar]
  • 17.Cai L, Li Y, Tan J, et al. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy[J] J Hematol Oncol. 2023;16(1):101. doi: 10.1186/s13045-023-01499-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Hematology are provided here courtesy of Editorial Office of Chinese Journal of Hematology

RESOURCES