Skip to main content
Animal Nutrition logoLink to Animal Nutrition
. 2023 Aug 19;15:364–374. doi: 10.1016/j.aninu.2023.08.002

Intestinal tryptophan metabolism in disease prevention and swine production

Zhenguo Hu c, Luya Feng b, Qian Jiang b, Wenliang Wang b, Bi'e Tan b, Xiongzhuo Tang b,, Yulong Yin a,b,c,
PMCID: PMC10695851  PMID: 38058568

Abstract

Tryptophan (Trp) is an essential amino acid that cannot be synthesized by animals. It has been characterized into two different isomers, levorotation-Trp (L-Trp) and dextrorotation-Trp (D-Trp), based on their distinct molecule orientation. Intestinal epithelial cells and gut microbiota are involved in metabolizing L-Trp in the gut via the activation of the kynurenine, serotonin, and indole pathways. However, knowledge regarding D-Trp metabolism in the gut remains unclear. In this review, we briefly update the current understanding of intestinal L/D-Trp metabolism and the function of their metabolites in modulating the gut physiology and diseases. Finally, we summarize the effects of Trp nutrition on swine production at different stages, including growth performance in weaned piglets and growing pigs, as well as the reproduction performance in sows.

Keywords: Tryptophan metabolism, Gut microbiota, Diseases, Swine production

1. Introduction

The gastrointestinal (GI) tract is a complex organ which harbors a variety of microorganisms collectively known as the gut microbiota. An increasing number of studies have suggested that the gut microbiota can be considered as a new “organ system”, because of its physiological interaction with the host as well as its inheritance capacity (McFarland, 2014; Zhang and Davies, 2016). For instance, the gut–kidney axis has been used to explain how the gut microbiota modulates the functional relationship between the gut and kidney (Lobel et al., 2020). Similarly, the roles of the gut microbiota in the establishment of the gut–brain axis, gut–liver axis, and gut–lung axis have also been reported (Caputi and Giron, 2018; Hamoud et al., 2018). These interorgan interactions require the involvement of a series of metabolites that are produced either by the gut microbes or intestinal epithelial cells. The gut microbiota produces bioactive compounds that trigger various biological reactions both in the proximal and distal connected organs. A disorganized gut microbial diversity and composition causes deleterious effects on the maintenance of the host health (Agus et al., 2018). Three gut microbial metabolites have increasingly been recognized as major bioactive compounds that modulate host–microbe interactions. The first is short-chain fatty acids (SCFAs) that are produced through fiber fermentation; the second is methylamines that are generated from choline; and the third is indoles which are derived from dietary tryptophan (Trp) metabolism (Monnerie et al., 2020).

2. Origin and metabolic outcomes of dietary Trp

Trp consists of a carbon connected to the third position of an indole group and is divided into two distinct isomers, levorotation-Trp (L-Trp) and dextrorotation-Trp (D-Trp) (Zelante et al., 2013). Mammals cannot naturally synthesize L-Trp, which is normally obtained through dietary supplementation (Liu et al., 2016b; Yin et al., 2021). Only a small amount of L-Trp is directly utilized as a substrate for protein synthesis, while most L-Trp is degraded to produce various metabolites which modulate host physiology. However, many D-amino acids (D-AA) including D-Trp have been reported to directly originate from the intestinal commensal bacteria (Bastings et al., 2019). Various racemases are involved in the conversion of D-AA in the animal body (Kobayashi, 2019). While the endogenous synthesis of D-Trp in any tissues has not yet been clearly reported, this is probably due to its extremely low expression.

There are three major intestinal L-Trp metabolic pathways as described below: (a) the indole pathway in which L-Trp is directly converted into indoles and derivates and tryptamine by the gut microbes (Sardar and Kempken, 2018); (b) the kynurenine (KYN) pathway in which L-Trp is degraded into KYN by a key rate-limiting enzyme indoleamine-2,3-dioxygenase 1 (IDO-1) in the intestinal epithelial cells (Muneer, 2020); (c) the serotonin or 5-hydroxytryptamine (5-HT) pathway which is mainly activated in the enterochromaffin cells to metabolize L-Trp into serotonin through the enzymatic activation of tryptophan hydroxylase 1 (TpH1) (Thomas et al., 2013). Regarding the metabolism of D-Trp, it appears to be metabolized by the gut commensal bacteria via diamine oxidase (DAO) and its metabolites may act as an immune modulatory substance in the gut (Kobayashi, 2019) (Fig. 1).

Fig. 1.

Fig. 1

Model of dietary Trp metabolism. Dietary Trp metabolism consists of three major outcomes. Most Trp is degraded by the KYN pathway in the host cells to convert Trp into KYN and derivates, regulating physiological function in the brain, liver, kidney and gut. Serotonin pathway occurs in the enterochromaffin cells to convert Trp into 5-HT to modulate the gut-brain communication, neuron function and circadian rhythm. While the gut microbiota-derived indole pathway metabolizes Trp into indole and its derivates to regulate gut barrier integrity and immune function. Additionally, gut commensal bacteria-generated D-Trp may also contribute to the maintenance of gut immune homeostasis. KYN = kynurenine; Trp = tryptophan; DAO = diamine oxidase; IAA = indole-3-acid-acetic; IAld = indole-3-aldehyde; 5-HTP = 5-hydroxytryptophan; 5-HT = 5-hydroxytryptamine; 5-HIA = 5-hydroxyindolacetate; 3-HK = 3-hydroxy-kynurenine; 3-HAA = 3-hydroxyanthranilic acid; QUIN = quinolinic acid; KYNA = kynurenic acid.

2.1. Indole pathway

The indole pathway is the main pathway of Trp metabolism by the gut microbiota, generating numerous indole derivatives including indole-3-aldehyde (IAld), indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), indole-3-acetaldehyde (IAAld), and indoleacetic acid. More than 85 different bacterial species are involved in the indole pathway including Oribacterium sinus, Symbiobacterium thermophilum, Escherichia coli, Escherichia albertii, and Klebsiella oxytoca (Carlier et al., 2004; Lee and Lee, 2010). The activation of the indole pathway requires the involvement of a subset of catalytic enzymes (Fig. 2). For instance, L-tryptophan 2-monooxygenase (TMO) converts L-Trp into indole-3-acetamide (IAM). Aromatic amino acid aminotransferase (ArAT) catalyzes the metabolic process of L-Trp to produce indole-3-pyruvic acid (IPYA). IPYA is then sequentially converted into indole-3-lactic acid (ILA), indole acrylic acid (IA), and indole-3-propionic acid (IPA) under the activation of phenyllactate dehydrogenase (FldH), phenyllactate dehydratase (FldBC), and acyl-CoA dehydrogenase (AcdA), respectively (Covarrubias et al., 2021). Moreover, Trp decarboxylase 1 is involved in metabolizing L-Trp to tryptamine, which is further converted to IAAld via the activation of Trp decarboxylase (TDC) (Shah et al., 2021). Additionally, IAA and IPA can conjugate with glutamine or glycine to further produce indolyl-acetyl-glutamine, which is oxidized to IAld by peroxidase-catalyzed aerobic oxidation, and indolyl-acryloyl-glycine (IAcrGly) in the liver or kidney (Mello et al., 1980). The excessive excretion of these two urinary indoles causes coeliac disease and Hartnup disorder (Keszthelyi et al., 2009).

Fig. 2.

Fig. 2

Intestinal Trp metabolic pathways and their intermediates. Green colors denote key enzymes involved in Trp metabolism in the gut epithelial cells and microbes. Trp = tryptophan; TpH1 = tryptophan hydroxylase 1; AADC = aromatic l-amino acid decarboxylase; MAO = monoamine oxidase; NAT = N-acetyltransferase; ASMT = N-acetylserotonin O-methyltransferase; IDO1 = indoleamine-2,3-dioxygenase 1; KAT = kynurenine aminotransferase; KMO = kynurenine 3-monooxygenase; KYNU = kynureninase; HAAO = 3-hydroxyanthranilicacid 3,4-dioxygenase; ACMS = 2-amino-3-carboxymuconate-6-semialdehyde; ACMSD = α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase; QPRT = quinolinate phosphoribosyltransferase; ArAT = aromatic amino acid aminotransferase; FIdH = phenyllactate dehydrogenase; FIdBC = phenyllactate dehydratae; AcdA = acyl-coA dehydrogenase; TMO = tryptophan 2-monooxygenase; IAAID-d = indole-3-acetaldehyde dehydrogenase; TDC1 = tryptophan decarboxylase 1; TNA = tryptophanase; DAO = diamine oxidase; 5-HTP = 5-hydroxytryptophan; 5-HT = 5-hydroxytryptamine; 5-HIAA = 5-hydroxyindoleacetate; NAS = normelatonin; KYNA = kynurenic acid; 3-HK = 3-hydroxy-kynurenine; AA = anthranilic acid; XA = xanthurenic acid; 3-HAA = 3-hydroxyanthranilic acid; ACMS = α-amino-β-carboxymuconate-ε-semialdehyde; QUIN = quinolinic acid; AMS = α-amino-β-muconate-ε-semialdehyde; NAD+ = nicotinamide adenine dinucleotide; PA = picolinic acid; IPYA = indole-3-pyruvic acid; ILA = indole-3-lactic acid; IA = indole acrylic acid; IPA = indole-3-propionic acid; IAM = indole-3-acetamide; IAA = indole-3-acid-acetic; IAAld = indole-3-acetaldehyde.

The aryl hydrocarbon receptor (AhR) is a ligand-activated sensor that interacts with microbial stimuli to regulate the intestinal epithelium renewal, barrier integrity, and immune homeostasis (Lamas et al., 2018). Many metabolites from the indole pathway act as AhR ligands (Hubbard et al., 2015; Lamas et al., 2020; Szelest et al., 2021). For instance, IAA binds AhR to regulate the expression of interleukin 22 (IL-22) in the gut. Restored intestinal IAA levels protected mice from ethanol-induced steatohepatitis by inducing the expression of intestinal IL-22 and regenerating family member 3 gamma (Hendrikx et al., 2019). Additionally, the increased expression levels of IAA and IPA can enhance the AhR activity and modulate the CD4+ T cell differentiation (Ferrario et al., 2017). Importantly, AhR activity needs to be appropriately controlled, as excessive activation of the AhR pathway by the overexpression of IAA promoted the growth of pancreatic tumors in mice (Hezaveh et al., 2022). Moreover, the excessive production of indole inhibits the intracellular growth of Chlamydia trachomatis under hypoxic conditions by affecting the scavenging activity of AhR (Zhang et al., 2023).

2.2. Kynurenine pathway (KP)

Two key rate-limiting enzymes, IDO and tryptophan-2,3-dioxygenase (TDO), are involved in metabolizing L-Trp into KYN (Savitz, 2020). KYN is then sequentially converted into 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), quinolinic acid (QUIN), and nicotinamide adenine dinucleotide (NAD) through the activation of kynurenine 3-monooxygenase (KMO), kynureninase (KYNU), and quinolinate phosphoribosyltransferase (QPRT), respectively. In addition, KYN can be converted into kynurenic acid (KYNA) and anthranilic acid (AA) by kynurenine aminotransferase and KYNU (Fig. 2). Despite that the KP is mainly activated in the host cells, recent studies found that a few bacterial species like Burkholderia cepacia J2315 and Pseudomonas fluorescens strain KU-7 also activate the KP (Hasegawa et al., 2000; Sun et al., 2022). B. cepacia J2315 metabolizes L-Trp into 2-amino-3-carboxymuconate semialdehyde, which is further degraded to pyruvate and acetate (Colabroy and Begley, 2005).

The KP is largely activated in the peripheral tissues, such as the liver, kidney, and central nervous system (Kennedy et al., 2017). Metabolites of the KP are capable of affecting the activity of neurocytes in the brain to modulate the host physiology. Approximately 60% of KYN was transferred by the peripheral circulation system and then entered the brain via the large amino acid transporter 1 (LAT1) (Proietti et al., 2020). KYN can be directly converted into KYNA, a broad-spectrum lipotropic glutamate receptor antagonist, through the KP in nerve cells to reduce glutamine and dopamine levels (Rossi et al., 2019). Many downstream metabolites of KYN are neuroactive and capable of modulating neuroplasticity and/or exerting neurotoxic activities, partially through N-methyl-D-aspartate (NMDA) receptor signaling and glutamatergic neurotransmission (Erhardt et al., 2017). Similar to the indole derivates, KYN has been also identified as an endogenous AhR ligand in the immune and tumor cells, acting in both autocrine and paracrine manners to extend the survival of tumor cells (Opitz et al., 2011). Tumor-repopulating cells promote the expression of programmed cell death protein 1 in the CD8+ T cells through the activation of the KYN-AhR pathway (Liu et al., 2018). Moreover, KYN has been shown to activate AhR signals to promote western diet induced-obesity by enhancing the IDO activity stimulated by the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and nuclear factor kappa B (NF-κB) in a mouse model (Moyer et al., 2016; Xu et al., 2015).

2.3. Serotonin pathway

The intestinal serotonin pathway is mainly activated in the enterochromaffin (EC) cells to produce hydroxytryptophan (5-HTP) through the activation of tryptophan hydroxylase 1 (TpH1) (Walther and Bader, 2003). The 5-HTP is sequentially converted into 5-HT, N-acetylserotonin (NAS) and melatonin via aromatic amino acid decarboxylase (AADC), aralkylamine N-acetyltransferase (NAT), and N-acetylserotonin O-methyltransferase (ASMT). Moreover, serotonin can also be converted to 5-hydroxyindoleacetate (5-HIAA) through the activation of monoamine oxidase (MAO) (Das et al., 2004) (Fig. 2). Apart from EC cells, some bacterial species like Bacillus cereus, Clostridium tetani, and Neisseria meningitidis are also capable of activating the serotonin pathway to produce 5-HT in the gut (Taj and Jamil, 2018).

Most 5-HT is produced in the gut and trigger intestinal peristalsis, secretion, vasodilatation, and absorption by activating the specific 5-HT receptors (Lund et al., 2018). Additionally, 5-HT serves as an endogenous activator of AhR in the intestinal epithelial cells to regulate the downstream target gene cytochrome P450 1A1 (CYP1A1) expression, thus modulating the immune response in the gut (Manzella et al., 2018). The expression level of serotonin transporter (SERT) in the gut determined the progression of inflammatory bowel diseases, with decreased SERT levels inducing more severe colitis (Sharma et al., 2021). The 5-HT is also produced in the brain via the activation of TpH2, which acts as an important neuromodulator. The 5-HT itself cannot cross the blood–brain barrier (BBB) and its synthesis is mediated by the transportation of L-Trp to the brain. The majority of 5-HT is found in the hypothalamus and epiphysis and acts as a neurotransmitter to regulate sleep, pain, and heat (De Deurwaerdere and Di Giovanni, 2021; Hardeland, 2010).

Melatonin, a downstream product of the serotonin pathway, is produced by the pineal gland and approximately 80% of pineal secretory products in the brain regulate sleep. In mammals, melatonin can be metabolized to 6-hydroxymelatonin (6-OHM) through the catalyzation of the CYP1A2 enzyme which produces 6-sulfatoxymelatonin in conjunction with sulfate (Hardeland, 2017). Melatonin is also converted to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) through the activation of IDO and cytochrome P450 (Semak et al., 2005). Both 6-OHM and AFMK have been reported to be produced non-enzymatically by interacting with various oxidants, including reactive oxygen species and reactive nitrogen species (Tesoriere et al., 2001).

2.4. D-Trp metabolism

Almost all amino acids are naturally found in two forms, either as levorotation (L) or dextrorotation (D) enantiomers (Sasabe and Suzuki, 2018). Previously, researchers have mostly focused on the dominant L-amino acids and revealed their important functions in regulating host physiology. Recently, the emerging roles of D-AA have been recognized in bacteria and the intestinal bacterial-generated free D-AA have an indispensable function in modulating the gut microbial homeostasis and mucosal immunity (Cava et al., 2011; Sasabe et al., 2016). L-Trp is converted into D-Trp via racemase which is normally produced by the gut commensal bacteria (Kato and Oikawa, 2018; Kobayashi, 2019). The addition of D-Trp increased the D-KYN metabolism in the mice/rat liver and plasma, which is dependent on D-amino acid oxidase activity (Ishii et al., 2010; Notarangelo et al., 2016). Feed supplemented with D-Trp also elevated the production of the gut regulatory T cells to ameliorate allergic airway inflammation and increased the diversity of gut microbes in mice (Kepert et al., 2017). D-Trp can be absorbed by the intestinal epithelial cells or secreted into gut lumen, which may be converted to hydrogen peroxide (H2O2), a broad-spectrum antibacterial agent, by DAO in the gut to eliminate pathogenic bacterial infection (Molla et al., 2006). D-AA can affect the gut commensal bacterial growth, biofilm formation, and peptidoglycan metabolism as well as pathogenic bacterial colonization in the gut (Hochbaum et al., 2011; Lam et al., 2009). Hence, D-Trp metabolism may have the ability to determine the composition and diversity of gut commensal microbiota. In a recent study, it was reported that D-Trp inhibited the growth of Citrobacter rodentium in the mice gut by reducing the IA level to shape the structure of intestinal microbial community (Seki et al., 2022).

3. Trp nutrition in diseases prevention

3.1. Effect on irritable bowel syndrome

Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder that causes chronic diarrhea or constipation, stomach bloating, and abdominal cramping by affecting the gastrointestinal motility and immunity (Ford et al., 2018; Lee et al., 2022; Raskov et al., 2016). However, the mechanism of IBS-related pathophysiology remains poorly understood. It is suggested that gut microbiota-derived metabolites may contribute to the development of IBS symptoms. L-Trp and its metabolites improved IBS by positively regulating the gut microbial composition, intestinal barrier integrity, and immunity (Gershon, 2013; Stakenborg et al., 2019; Wouters et al., 2007). For example, indole metabolites activate AhR activity in a Citrobacter reddentium-infection-induced IBS model in mice. The expression of TpH1, a key enzyme involved in the biosynthesis of the neurotransmitter serotonin, is regulated by the gut bacteria Corynebacterium spp., Streptococcus spp., and Enterococcus spp. (Jun et al., 2011; Kerckhoffs et al., 2012; Spacova et al., 2020). Two probiotics Lactobacillus spp. and Enterococcus spp. improved the gut barrier and immune function through the generation of indoles and its derivates (Schepper et al., 2020). It is suggested that changing the composition of the gut bacteria related to L-Trp metabolism affects the gut immune function, which in turn may be linked to IBS-related symptoms in livestock and poultry. Clostridium butyricum and Enterococcus faecalis enhanced the intestinal barrier integrity and improved the intestinal immune function in lipopolysaccharide-challenged piglets (Wang et al., 2019). C. butyricum, Bacillus subtilis, and B. licheniformis also improved the growth performance and intestinal morphology in chickens, ducks, and cows (Sun et al., 2022; Wang et al., 2017, 2023; Xing et al., 2015). Moreover, dietary L-Trp supplementation significantly increased the levels of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), and catalase (CAT) in the serum and stocking density in white pekin ducks (Liu et al., 2015). Administration of D-Trp increased the number of gut regulatory T cells and altered the diversity of the gut microbiota, which further affected IBS progression (Kepert et al., 2017). IBS is often associated with an increase in intestinal epithelium permeability and lipopolysaccharide levels. Indoles and its derivates have been reported to act as AhR ligands to regulate the intestinal epithelium permeability and immunity. Therefore, L/D-Trp metabolites may contribute to IBS pathology by regulating the gut epithelial integrity and immunity.

3.2. Effect on metabolic syndrome and lipid metabolism

Metabolic syndrome (MS) is intricately linked with the dysregulation of the gut microbiota and host metabolism, causing fatty liver disease and obesity. Several studies have found that various gut metabolites like bile acids, indole derivates, and other bioactive molecules are involved in the modulation of metabolic diseases. Individuals with obesity or multiple sclerosis have active type 1 T helper cell (Th1) immune responses, with increased interferon-gamma (IFN-γ) and interleukin-1beta (IL-1β) expression (Gostner et al., 2015). IFN-γ activates the rate-limiting enzyme IDO in the monocyte-derived macrophages and dendritic cells. IDO1-deficient mouse reduced development of atherosclerosis lesions through the activation of interleukin-10 (IL-10) (Kim et al., 2019). Besides, D-Trp may be transferred to liver, kidney and lung where it can be further metabolized into H2O2 to induce low-grade chronic inflammation, causing metabolic imbalance. Even though 5-HT cannot cross the BBB, it is still capable of inducing satiety to prevent excessive food intake, and thereby avoiding obesity progression (Garfield et al., 2014; Hansson et al., 2016). Melatonin acts as a metabolic regulator to improve sleep efficiency and exhibits antioxidant and anti-inflammatory properties. Melatonin treatment improved insulin sensitivity and lipid metabolism in type 2 diabetic rats and increased the hepatic glycogen content in the mouse liver (Ayyash and Holloway, 2021, 2022). Abolished synthesis of melatonin resulted in hyperinsulinemia and fatty liver disease in mice (Stacchiotti et al., 2019).

Trp metabolites play an important role in lipid metabolism. 5-HT has been shown to stimulate lipolysis in adipose tissue and promote gluconeogenesis in hepatocytes. 5-HT increased the lipid accumulation through activation of prostaglandin endoperoxide synthase 1 in the mouse liver (Garfield et al., 2014; Hansson et al., 2016). Supplementation with L-Trp increased the amount of triglycerides and non-esterified fatty acids in chickens and ducks (Rogers and Pesti, 1992). Supplementation with AhR agonists or Lactobacillus reuteri improved the glucose dysmetabolism and liver steatosis by compensating the gut microbiota-mediated AhR signaling (Hwang et al., 2016). In addition, lipid metabolism also affected the reproduction performance and shaped the quality of gametes and embryos in livestock. Upregulation of genes related to lipid metabolism such as perilipin 2, apolipoprotein A-1, and sterol O-acyltransferase-1 promoted lipid accumulation and enhanced blastocyst formation and cell differentiation in pigs and cows (Kajdasz et al., 2020; Kelly et al., 2016).

SCFAs consist of acetate, propionate, and butyrate which are generally produced by the gut bacteria-mediated fiber fermentation to modulate lipolysis and adipogenesis. Acetate and propionate inhibit endogenous lipolysis and acetate promotes adipocyte differentiation (Al-Lahham et al., 2012; Li et al., 2014). Diet modulates the SCFA production via regulating the gut microbial composition. Dietary Trp supplementation changed the abundance of SCFA-producing bacteria E. faecalis, E. coli, Lactobacillus spp., Bifidobacterium spp., and Clostridium sporogene in the gut (Belzer et al., 2017; Louis et al., 2010; Reichardt et al., 2014; Scott et al., 2006). Supplementation with Lactobacillus plantarum JL01 improved the L-Trp metabolism and fat digestion and absorption in the cecum of weaned piglets (Geng et al., 2021). Both L-Trp metabolites and fatty acids relieved the necrotizing enterocolitis induced by fish oil treatment in piglets (Yakah et al., 2021). The n-6:n-3 polyunsaturated fatty acid (PUFA) (1:1–5:1) facilitated the absorption and utilization of fatty acids and improved the adipose composition in the longissimus dorsi of pigs (Li et al., 2015). Feeding sows with a high–low Trp diet (0.39% Trp in the morning and 0.13% Trp in the afternoon) significantly increased the n-6:n-3 PUFA ratio in the livers of their newborn piglets (Xu et al., 2019). L-Trp improved the lipid metabolism to overcome oxidative stress and metabolic challenges in piglets fed with oxidized corn oil (Gao et al., 2022). Dietary supplementation with 0.8% L-Trp increased the expression level of peripheral serotonin, which in turn affected the hepatic lipogenesis and gluconeogenesis, and increased glycolysis in low body weight piglets (Goodarzi et al., 2021). The TpH1 inhibitor oxyphenylalanine and heterocyclic phenylalanine interacts with the peripheral system to decrease the fat accumulation in the liver (Pagire et al., 2022).

3.3. Effect on bacterial infection and growth

The combination of E. coli Nissle (EcN) and L-Trp, but not EcN or L-Trp alone, improved the rotavirus infection-induced diarrhea in malnourished piglets by reducing the expression levels of proinflammatory genes (Michael et al., 2022). Dietary supplementation with L-Trp compensated the body weight loss and growth performance in weaned piglets infected with enterotoxigenic E. coli K88 (Capozzalo et al., 2015; Trevisi et al., 2009). The indole pathway-derived AhR agonists have been reported to protect against a variety of microorganism infections. For example, IAld induced the production of IL-22 to defend against mucosal candidiasis infection (D'Onofrio et al., 2021). Lack or degradation of AhR led to an increased susceptibility to C. rodentium infection in mice (Meynier et al., 2022). In contrast, the restoration of AhR levels decreased the host susceptibility to the same bacterial infection (Meynier et al., 2022). Moreover, CD4+ T cells limited Chlamydia and Leishmania parasite infection through the over-activation of IDO1 expression (Dey et al., 2020). Recent study has shown that D-Trp, similar to other D-AA, plays an important role in inhibiting bacterial growth (Chen et al., 2018). Supplementation with D-Trp, but not L-Trp alone, in peptone yeast glucose broth significantly inhibited the growth of Listeria monocytogenes, Salmonella enterica, and E. coli 0157:H7 (Elafify et al., 2020; Koseki et al., 2015). Moreover, dietary addition of D-Trp significantly decreased the biofilm formation of Pseudomonas mendocina and Staphylococcus aureus (Ghosh et al., 2019). These findings suggested a potential strategy to protect against bacterial growth and infection through dietary supplementation with D-Trp.

3.4. Effect on neuronal activity

Increasing evidence suggests that gut-derived metabolites can regulate the neuronal activity in the brain to control host behavior via the gut-brain axis (Chu et al., 2019; Gracie et al., 2019; O'Donnell et al., 2020; Sharon et al., 2019). Intestinal L-Trp metabolism catalyzed by Bacteroides regulated numerous behaviors in weaned piglets such as feeding, attacking, and sleeping. Serotonin levels affected the secretion of anorexigenic hormones in the brain to regulate feeding in piglets (Cui et al., 2012; Lam et al., 2010). The serotonin pathway metabolized L-Trp to 5-HT whose low expression in the brain is a key symptom of depression (Saitow et al., 2020). Augmentation of 5-HT levels by supplementing with a high Trp diet increased positive emotions and alleviated depression (Firk and Markus, 2009). The non-competitive NMDA receptor antagonist acts as an inhibitor of serotonin reuptake to improve obsessive-compulsive disorder (Guo et al., 2020). Melatonin, the key Trp metabolite from the serotonin pathway, regulates the circadian rhythm and periodical hormone secretion and is often utilized to treat chronic insomnia (Bhattacharya et al., 2019; Ferracioli-Oda et al., 2013). Depletion of TpH2, a core enzyme that catalyzes the conversion of Trp to serotonin, impaired the normal growth of Bama miniature pigs before the weaning stage (Ze et al., 2017). KYNA is a KP metabolite that negatively regulates NMDA activity and positively modulates the immune responses by activating AhR (Blanco-Ayala et al., 2020; Martos et al., 2022; Walczak et al., 2021). A positive correlation between KYNA levels and dopaminergic activity has been found in the brain (Muller et al., 2013). Additionally, KYNA could relieve the stress responses and positively affect the retina development in cows (Gurdita et al., 2023; Rejdak et al., 2003; Yoshida et al., 2013; Zarnowski et al., 2004). QUIN, another neuroactive metabolite derived from the KP, acts as an NMDA receptor agonist to inhibit the reuptake of glutamate in astrocytes and disrupts the energy homeostasis in the brain (Notarangelo et al., 2016). The role of QUIN in eliciting cognitive deficits has recently been reported in mice and piglets (Huang et al., 2021; Lee et al., 2020, 2021; Millischer et al., 2021). The increased QUIN levels are associated with several neurodegenerative disorders, such as Alzheimer's and Huntington's disease (Campesan et al., 2011).

4. Trp nutrition in swine production

4.1. Effect on gut microbial homeostasis and growth performance in weaned piglets

Post weaning diarrhea causes great economic loss in the swine industry worldwide. Undernutrition and dysbacteriosis are two major etiological factors causing diarrhea in weaned piglets (Li et al., 2021). Recently, nutritional intervention has been utilized as an effective strategy to improve or prevent malnutrition caused-diarrhea in weaned piglets by optimizing the dietary nutrition levels, such as amino acids (He et al., 2022), proteins (Hamoud et al., 2018; Kennedy et al., 2017), bioactive compounds from medicinal plants (Liu et al., 2016a), yeast-derived nucleotides, and gut microbiota-generated metabolites (Erhardt et al., 2017).

The effect of L-Trp supplementation in a corn and soybean meal-based diet on regulating the diversity and composition of gut microbes became evident in weaned piglets. Dietary supplementation with 0.35% L-Trp increased the abundance of Ruminococcaceae, Lactobacillus, and Muribaculaceae and decreased the abundance of Turicibacter, Prevotella, and Methanobrevibacter in the colon of weaned piglets (Rao et al., 2021). Similarly, feeding weaned piglets with 0.2% and 0.4% L-Trp also changed the microbial composition and diversity, with an increased population of Prevotella, Roseburia, and Succinivibrio genera and decreased the population of Clostridium sensu stricto, Clostridium XI, and opportunistic pathogens in the cecum (Liang et al., 2018a). In contrast, dietary addition of 0.2% to 0.4% L-Trp increased the abundance of Lactobacillus and Clostridium XI and reduced the abundance of C. sensu stricto and Streptococcus in the jejunum of weaned piglets. Moreover, L-Trp supplementation activated AhR and the expression of immune responsive genes CYP1 A1/B1, tight junction protein zonula occludens-1 (ZO-1) and occludin, antimicrobial peptide porcine β-defensin-2 (pBD-2) (Chen et al., 2019; Liang et al., 2018a). However, dietary supplementation with 0.75% L-Trp negatively affected the gut barrier function in the jejunum of weaned piglets, with decreased levels of tight junction protein ZO-1 and occludin (Tossou et al., 2016). Additionally, dietary supplementation with L-Trp alleviated dysbacteriosis and may improve lipopolysaccharide infection-induced diarrhea in weaned piglets (Liu et al., 2022; Xia et al., 2022). Folium sennae extracts in an infection-caused diarrhea model has been found to shape the mouse gut microbial structures by reducing the abundance of Adlercreutzia, Lactobacillus, Dehalobacterium, Dorea, and Oscillospira, all of which are involved in Trp metabolism (Zhang et al., 2020). It is possible that the modulation of the gut microbial composition and gut immune function may contribute to the prevention of diarrhea in weaned piglets.

Notably, the effect of dietary L-Trp supplementation on the improvement of growth performance in weaned piglets remains controversial. Feeding with 0.21%, 0.28%, and 0.35% of L-Trp significantly improved the average daily feed intake (ADFI) average daily gain (ADG) weight, feed conversion ratio (FCR), visceral organ index, and decreased the diarrhea rate in weaned piglets (Rao et al., 2021). However, other studies found that dietary addition of 0.15% and 0.75% L-Trp did not affect the growth performance but increased the crypt depth and ratio of villus height to crypt depth in the jejunum of weaned piglets. It seems that the effect of dietary Trp on the growth performance of piglets is dose-dependent, low or excessive addition of L-Trp does not significantly improve the growth performance but may improve feed utilization in weaned piglets (Liu et al., 2017; Sterndale et al., 2020).

4.2. Effect on growth performance in growing pigs

L-Trp is often formulated with other indispensable amino acids to regulate the growth performance of growing pigs (Table 1). Increasing the standardized ileal digestible (SID) leucine (Leu) to Trp or valine (Val) to Trp ratios partially alleviated the negative effects caused by excessive Leu on the ADG, ADFI, and hypothalamic serotonin level in growing pigs (Kerkaert et al., 2021; Kwon et al., 2021a, 2021b). Additionally, elevating the SID Trp to lysine (Lys) ratio from 0.150 to 0.225 increased the ADG, ADFI, and gain-to-feed (G:F) ratio in grower–finisher pigs (Liu et al., 2019b). Maintaining the levels of Lys, methionine (Met), threonine (Thr), and L-Trp in early protein-restricted diets during the grower phase improved the growth performance, with an increased growth rate and FCR, and decreased diarrhea rate (Sun et al., 2020). Additionally, the addition of different L-Trp concentrations to the diet with low crude protein levels enhanced the ADG and G:F ratio in growing barrows (Sato et al., 2021). Intensified housing conditions and poor sanitation are often associated with decreased growth performance and the abnormal activation of the immune system during pig farming. Increased dietary levels of Trp, Thr, and Met + cysteine (Cys) have been shown to improve the growth performance and protein deposition in growing pigs with Salmonella typhimurium infection and under poor sanitation conditions (Valini et al., 2023). The dietary Trp requirements of growing female pigs at different body weights have been analyzed by Eder et al., they found that Trp-deficient diets at the body weights of 25 to 50 kg and 50 to 80 kg reduced the feed consumption through the reduced production of serotonin, but insufficient Trp supplementation in the later age had no effect on feed consumption (Eder et al., 2003). Additionally, supplementation with 0.16% L-Trp improved the growth performance and meat quality of finishing pigs through the secretion of serotonin in the brain to alleviate stress responses (Jiao et al., 2016; Ma et al., 2020).

Table 1.

Effect of Trp nutrition in swine production.

Stage Experimental duration, days Trp level Effects Reference
Piglets
Duroc × (Landrace × Yorkshire) 21 0.15% Improved growth performance Liu et al. (2019a)
Landrace × Yorkshire 28 0.2% or 0.4% Improved intestinal mucosal barrier function Liang et al. (2018b)
PIC 14 0.30% or 0.45% Enhanced the antioxidant capacity Mao et al. (2021)
Great Yorkshire × (Pietrain × Dalland) 28 0.5 g/kg Increased feed intake and decrease FCR Jansman et al. (2019)
Duroc sire line and Large White × Landrace dam 21 0.80% Improved lipid and glucose metabolism Goodarzi et al. (2021)
Pietrain × dbNaima/Porcus 34 Trp:Lys ratio (16.8%) Improved feed to gain ratio Naatjes et al. (2014)
Duroc × Landrace 21 0.16% Trp + 0.41% Phe + 0.22% Tyr Promoted the amino acid absorption Duanmu et al. (2021)
Large White × Landrace 21 0.34% SID Trp:4.6% SID LNAA Improved aspects of post-weaning performance Sterndale et al. (2020)
Landrace 14 15 μM ICA Enhanced intestinal epithelial proliferation Zhang et al. (2022)
Growing pigs
Duroc × Yorkshire × Landrace 28 SID Trp:Lys ratio (22.5%) Increased ADG, ADFI, gain to feed ratio Liu et al. (2019b)
PIC SID Trp:Lys (23%) Prevented negative effects of excessive Leu in diets Kwon et al. (2021b)
PIC TR4 × (Large White × PIC L02) 103 Moderate L-Lys HCl + high Ile, Val, and Trp + Val Increased ADFI Kerkaert et al. (2021)
Landrace 42 0.06% Trp in low CP diet Increased ADG, ADFI Sato et al. (2021)
28 Trp + Thr + Met Improved growth performance and protein deposition Valini et al. (2023)
[Deutsches Edelschwein or Landrace × Deutsches Edelschwein (dam)] × [Pietrain (sire)] 14 Trp-deficient diet Reduced the feed consumption Eder et al. (2003)
50 0.16% Improved the growth performance and meat quality Jiao et al. (2016); Ma et al. (2020)
Sows
Landrace × Yorkshire Began on day 103 of gestation and ended on day 28 of lactating 0.12% Improved reproduction performance Miao et al. (2019)
French Landrace × Large White 28 0.3% Tendency of increased litter weaning weight Mosnier et al. (2010)
Large White × Landrace 28 0.37% Reduced aggressive behavior Poletto et al. (2014)
Large White × Landrace 28 Trp-enriched diet Increased exploratory activities Lay et al. (2021)
Landrace × Yorkshire 0.35% in gestation and 0.48% in lactation Decreased head-to-head knocking behaviors Li et al. (2011)
Large White Lasted approximately 30 days until delivery 0.39% Decreased piglet birth weight Xu et al. (2019)
Landrace × Large White Late pregnancy until 7 days of lactation 0.42% or 0.56% Increased piglet survival Munn et al. (2021)

PIC = pig improvement company; Trp = tryptophan; Lys = lysine; Thr = threonine; Met = methionine; Phe = phenylalanine; Tyr = tyrosine; Ile = isoleucine; Val = valine; LNAA = large neutral amino acid; ICA = indole-3-carboxaldehyde; FCR = feed conversion ratio; ADG = average daily gain; ADFI = average daily feed intake; SID = standard ileal digestibility; CP = crude protein; SID = standardized ileal digestibility.

4.3. Effect on reproduction performance in sows

The effect of Trp supplementation on the reproduction performance of gestating/lactating sows has been studied (Table 1). Feeding lactating sows with 0.12% L-Trp increased the milk yield by activating the 5-HT levels in the porcine mammary epithelial cells, induced milk calcium concentration via the activation of CaM, increased the ADFI in lactating sows, and the ADG weight of their piglets (Miao et al., 2019). In addition, 0.3% Trp supplementation in lactating sows did not significantly affect the sow or litter performance, and only multiparous sows showed a tendency of increased litter weaning weight (Varvel, 2019). The dynamic dietary L-Trp requirements have been reported in gestating sows, with an increased Trp intake in late pregnancy compared to early pregnancy (Franco et al., 2014). Feeding sows with 0.42% or 0.56% L-Trp during the late pregnancy stage increased the piglet survival rate but had no significant effect on the serum melatonin and calcium levels (Munn et al., 2021). Sows fed with 0.37% L-Trp for a short duration during early gestation did not affect the birth weight and mortality, but the reduced aggression behavior was displayed in both sows and their piglets (Poletto et al., 2014). Supplementation with 0.35% L-Trp in the gestation diet and 0.48% L-Trp in the lactation diet decreased the total duration of head-to-head knocking behaviors in sows (Li et al., 2011). Additionally, L-Trp-enriched diet also increased the exploratory activities like nosing, rooting, and standing in gestating multiparous sows (Poletto et al., 2014). Notably, excessive L-Trp feeding to sows caused negative effects on their newborn piglets. Dietary supplementation of 0.39% L-Trp in sows at the late pregnancy stage decreased the average piglet birth weight, live farrowing rate, and hepatic fatty acid composition in the newborn piglets (Xu et al., 2019).

5. Conclusions and perspectives

Intestinal Trp metabolism and its metabolites play pivotal roles in regulating the host physiology and pathology. Strikingly, both L-Trp and D-Trp metabolites can determine the composition and diversity of the gut microbes and subsequently modulate the host–microbe interactions. It is important to further delineate the detailed mechanisms of L/D-Trp metabolism in the gut at different levels, from the gene regulation within a single cell to its functional interaction between the inter-connected organs, by combining metagenomics, transcriptomics, proteomics, and metabolomics. Additionally, the molecular mechanisms underlying how Trp metabolites modulate the swine production at various feeding stages also await further investigation.

Author contributions

Zhenguo Hu, Xiongzhuo Tang, Yulong Yin: Conceptualization, Revision. Zhenguo Hu, Xiongzhuo Tang: Writing-Original draft. Zhenguo Hu, Luya Feng, Qian Jiang, Wenliang Wang, Bi’e Tan, Xiongzhuo Tang, Yulong Yin: Writing-Review & Editing.

Declaration of competing interest

We confirm that the manuscript has not been published elsewhere and is not under consideration by other journals. All authors have approved the manuscript and agree with submission to Animal Nutrition. The authors have no conflicts of interest to declare.

Acknowledgements

This work was supported by the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-CXRC-038), the National Natural Science Foundation of China (U20A2054) and the Earmarked Fund for China Agriculture Research System (CARS-35).

Footnotes

Peer review under responsibility of Chinese Association of Animal Science and Veterinary Medicine.

Contributor Information

Xiongzhuo Tang, Email: xiongzhuo.tang@hunau.edu.cn.

Yulong Yin, Email: yinyulong@isa.ac.cn.

References

  1. Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–724. doi: 10.1016/j.chom.2018.05.003. [DOI] [PubMed] [Google Scholar]
  2. Al-Lahham S., Roelofsen H., Rezaee F., Weening D., Hoek A., Vonk R., Venema K. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. Eur J Clin Invest. 2012;42:357–364. doi: 10.1111/j.1365-2362.2011.02590.x. [DOI] [PubMed] [Google Scholar]
  3. Ayyash A., Holloway A.C. Fluoxetine-induced hepatic lipid accumulation is linked to elevated serotonin production. Can J Physiol Pharmacol. 2021;99:983–988. doi: 10.1139/cjpp-2020-0721. [DOI] [PubMed] [Google Scholar]
  4. Ayyash A., Holloway A.C. Fluoxetine-induced hepatic lipid accumulation is mediated by prostaglandin endoperoxide synthase 1 and is linked to elevated 15-deoxy-δ12,14 pgj2. J Appl Toxicol. 2022;42:1004–1015. doi: 10.1002/jat.4272. [DOI] [PubMed] [Google Scholar]
  5. Bastings J., Van Eijk H.M., Olde Damink S.W., Rensen S.S. D-amino acids in health and disease: a focus on cancer. Nutrients. 2019;11:2205. doi: 10.3390/nu11092205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Belzer C., Chia L.W., Aalvink S., Chamlagain B., Piironen V., Knol J., De Vos W.M. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. mBio. 2017;8 doi: 10.1128/mBio.00770-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bhattacharya S., Patel K.K., Dehari D., Agrawal A.K., Singh S. Melatonin and its ubiquitous anticancer effects. Mol Cell Biochem. 2019;462:133–155. doi: 10.1007/s11010-019-03617-5. [DOI] [PubMed] [Google Scholar]
  8. Blanco-Ayala T., Sathyasaikumar K.V., Uys J.D., Perez-De-La-Cruz V., Pidugu L.S., Schwarcz R. N-acetylcysteine inhibits kynurenine aminotransferase II. Neuroscience. 2020;444:160–169. doi: 10.1016/j.neuroscience.2020.07.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Campesan S., Green E.W., Breda C., Sathyasaikumar K.V., Muchowski P.J., Schwarcz R., Kyriacou C.P., Giorgini F. The kynurenine pathway modulates neurodegeneration in a drosophila model of huntington's disease. Curr Biol. 2011;21:961–966. doi: 10.1016/j.cub.2011.04.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Capozzalo M.M., Kim J.C., Htoo J.K., De Lange C.F., Mullan B.P., Hansen C.F., Resink J.W., Stumbles P.A., Hampson D.J., Pluske J.R. Effect of increasing the dietary tryptophan to lysine ratio on plasma levels of tryptophan, kynurenine and urea and on production traits in weaner pigs experimentally infected with an enterotoxigenic strain of escherichia coli. Arch Anim Nutr. 2015;69:17–29. doi: 10.1080/1745039X.2014.995972. [DOI] [PubMed] [Google Scholar]
  11. Caputi V., Giron M.C. Microbiome-gut-brain axis and toll-like receptors in Parkinson's disease. Int J Mol Sci. 2018;19:1689. doi: 10.3390/ijms19061689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carlier J.P., K'ouas G., Bonne I., Lozniewski A., Mory F. Oribacterium sinus gen. Nov., sp. Nov., within the family 'lachnospiraceae' (phylum firmicutes) Int J Syst Evol Microbiol. 2004;54:1611–1615. doi: 10.1099/ijs.0.63060-0. [DOI] [PubMed] [Google Scholar]
  13. Cava F., Lam H., De Pedro M.A., Waldor M.K. Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol Life Sci. 2011;68:817–831. doi: 10.1007/s00018-010-0571-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen J., Kudo H., Kan K., Kawamura S., Koseki S. Growth-inhibitory effect of D-tryptophan on Vibrio spp. inshucked and live oysters. Appl Environ Microbiol. 2018;84 doi: 10.1128/AEM.01543-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chen M., Liu Y., Xiong S., Wu M., Li B., Ruan Z., Hu X. Dietary L-tryptophan alleviated LPS-induced intestinal barrier injury by regulating tight junctions in a caco-2 cell monolayer model. Food Funct. 2019;10:2390–2398. doi: 10.1039/c9fo00123a. [DOI] [PubMed] [Google Scholar]
  16. Chu C., Murdock M.H., Jing D., Won T.H., Chung H., Kressel A.M., Tsaava T., Addorisio M.E., Putzel G.G., Zhou L., Bessman N.J., Yang R., Moriyama S., Parkhurst C.N., Li A., Meyer H.C., Teng F., Chavan S.S., Tracey K.J., Regev A., Schroeder F.C., Lee F.S., Liston C., Artis D. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574:543–548. doi: 10.1038/s41586-019-1644-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Colabroy K.L., Begley T.P. Tryptophan catabolism: identification and characterization of a new degradative pathway. J Bacteriol. 2005;187:7866–7869. doi: 10.1128/JB.187.22.7866-7869.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Covarrubias A.J., Perrone R., Grozio A., Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22:119–141. doi: 10.1038/s41580-020-00313-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cui R.J., Roberts B.L., Zhao H., Zhu M., Appleyard S.M. Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs. J Neurosci. 2012;32:16530–16538. doi: 10.1523/JNEUROSCI.1372-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Das Y.T., Bagchi M., Bagchi D., Preuss H.G. Safety of 5-hydroxy-L-tryptophan. Toxicol Lett. 2004;150:111–122. doi: 10.1016/j.toxlet.2003.12.070. [DOI] [PubMed] [Google Scholar]
  21. De Deurwaerdere P., Di Giovanni G. 5-HT interaction with other neurotransmitters: an overview. Prog Brain Res. 2021;259:1–5. doi: 10.1016/bs.pbr.2021.01.001. [DOI] [PubMed] [Google Scholar]
  22. Dey S., Sutanto-Ward E., Kopp K.L., Duhadaway J., Mondal A., Ghaban D., Lecoq I., Zocca M.-B., Merlo L.M.F., Mandik-Nayak L., Andersen M.H., Pedersen A.W., Muller A.J. Peptide vaccination directed against Ido1-expressing immune cells elicits CD8+and CD4+ T-cell-mediated antitumor immunity and enhanced anti-PD1 responses. J Immunother Cancer. 2020;8 doi: 10.1136/jitc-2020-000605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Duanmu Q., Tan B., Wang J., Huang B., Li J., Kang M., Huang K., Deng Q., Yin Y. The amino acids sensing and utilization in response to dietary aromatic amino acid supplementation in LPS-induced inflammation piglet model. Front Nutr. 2021;8 doi: 10.3389/fnut.2021.819835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. D’onofrio F., Renga G., Puccetti M., Pariano M., Bellet M.M., Santarelli I., Stincardini C., Mosci P., Ricci M., Giovagnoli S., Costantini C., Romani L. Indole-3-carboxaldehyde restores gut mucosal integrity and protects from liver fibrosis in murine sclerosing cholangitis. Cells. 2021;10:1622. doi: 10.3390/cells10071622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Eder K., Nonn H., Kluge H., Peganova S. Tryptophan requirement of growing pigs at various body weights. J Anim Physiol Anim Nutr (Berl) 2003;87:336–346. doi: 10.1046/j.1439-0396.2003.00442.x. [DOI] [PubMed] [Google Scholar]
  26. Elafify M., Chen J., Abdelkhalek A., Elsherbini M., Al-Ashmawy M., Koseki S. Combined d-tryptophan treatment and temperature stress exert antimicrobial activity against listeria monocytogenes in milk. J Food Prot. 2020;83:644–650. doi: 10.4315/0362-028X.JFP-19-414. [DOI] [PubMed] [Google Scholar]
  27. Erhardt S., Schwieler L., Imbeault S., Engberg G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology. 2017;112:297–306. doi: 10.1016/j.neuropharm.2016.05.020. [DOI] [PubMed] [Google Scholar]
  28. Ferracioli-Oda E., Qawasmi A., Bloch M.H. Meta-analysis: melatonin for the treatment of primary sleep disorders. PLoS One. 2013;8 doi: 10.1371/journal.pone.0063773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ferrario L., Foglia E., Garagiola E., Pacelli Cenderello G., Di Biagio A., Rizzardini G., Errico M., Iardino R., Croce D. The Italian answer to prep topic: evidence from a multi-centre hta study. Value Health. 2017;20 [Google Scholar]
  30. Firk C., Markus C.R. Mood and cortisol responses following tryptophan-rich hydrolyzed protein and acute stress in healthy subjects with high and low cognitive reactivity to depression. Clin Nutr. 2009;28:266–271. doi: 10.1016/j.clnu.2009.03.002. [DOI] [PubMed] [Google Scholar]
  31. Ford A.C., Moayyedi P., Chey W.D., Harris L.A., Lacy B.E., Saito Y.A., Quigley E.M.M., Syndrome Acgtfomoib American college of gastroenterology monograph on management of irritable bowel syndrome. Am J Gastroenterol. 2018;113:1–18. doi: 10.1038/s41395-018-0084-x. [DOI] [PubMed] [Google Scholar]
  32. Franco D.J., Josephson J.K., Moehn S., Pencharz P.B., Ball R.O. Tryptophan requirement of pregnant sows. J Anim Sci. 2014;92:4457–4465. doi: 10.2527/jas.2013-7023. [DOI] [PubMed] [Google Scholar]
  33. Gao N., Yang Y., Liu S., Fang C., Dou X., Zhang L., et al. Gut-derived metabolites from dietary tryptophan supplementation quench intestinal inflammation through the AMPK-SIRT1-Autophagy pathway. J Agric Food Chem. 2022;70:16080–16095. doi: 10.1021/acs.jafc.2c05381. [DOI] [PubMed] [Google Scholar]
  34. Garfield A.S., Burke L.K., Shaw J., Evans M.L., Heisler L.K. Distribution of cells responsive to 5-HT6 receptor antagonist-induced hypophagia. Behav Brain Res. 2014;266:201–206. doi: 10.1016/j.bbr.2014.02.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Geng T., Su S., Sun K., Zhao L., Zhao Y., Bao N., Pan L., Sun H. Effects of feeding a lactobacillus plantarum JL01 diet on caecal bacteria and metabolites of weaned piglets. Lett Appl Microbiol. 2021;72:24–35. doi: 10.1111/lam.13399. [DOI] [PubMed] [Google Scholar]
  36. Gershon M.D. 5-hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes. 2013;20:14–21. doi: 10.1097/MED.0b013e32835bc703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ghosh S., Qureshi A., Purohit H.J. D-tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus. J Biosci. 2019;44:3. [PubMed] [Google Scholar]
  38. Goodarzi P., Habibi M., Roberts K., Sutton J., Shili C.N., Lin D., Pezeshki A. Dietary tryptophan supplementation alters fat and glucose metabolism in a low-birthweight piglet model. Nutrients. 2021;13:2531. doi: 10.3390/nu13082561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Gostner J.M., Raggl E., Becker K., Überall F., Schennach H., Pease J.E., Fuchs D. Bisphenol a suppresses Th1-type immune response in human peripheral blood mononuclear cells in vitro. Immunol Lett. 2015;168:285–292. doi: 10.1016/j.imlet.2015.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Gracie D.J., Hamlin P.J., Ford A.C. The influence of the brain–gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol. 2019;4:632–642. doi: 10.1016/S2468-1253(19)30089-5. [DOI] [PubMed] [Google Scholar]
  41. Guo J., Wang Z., Liu R., Huang Y., Zhang N., Zhang R. Memantine, donepezil, or combination therapy-what is the best therapy for alzheimer's disease? A network meta-analysis. Brain Behav. 2020;10 doi: 10.1002/brb3.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Gurdita A., Kwiecien J.M., Choh V. Development of a new surgical technique to infuse kynurenic acid to optic nerves in chickens for studying loss of myelination. Heliyon. 2023;9 doi: 10.1016/j.heliyon.2023.e14361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hamoud A.R., Weaver L., Stec D.E., Hinds T.D., Jr. Bilirubin in the liver-gut signaling axis. Trends Endocrinol Metab. 2018;29:140–150. doi: 10.1016/j.tem.2018.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hansson B., Medina A., Fryklund C., Fex M., Stenkula K.G. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells. Biochem Biophys Res Commun. 2016;474:357–363. doi: 10.1016/j.bbrc.2016.04.110. [DOI] [PubMed] [Google Scholar]
  45. Hardeland R. Melatonin metabolism in the central nervous system. Curr Neuropharmacol. 2010;8:168–181. doi: 10.2174/157015910792246244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Hardeland R. Taxon- and site-specific melatonin catabolism. Molecules. 2017;22:2015. doi: 10.3390/molecules22112015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hasegawa Y., Muraki T., Tokuyama T., Iwaki H., Tatsuno M., Lau P.C. A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7. FEMS Microbiol Lett. 2000;190:185–190. doi: 10.1111/j.1574-6968.2000.tb09284.x. [DOI] [PubMed] [Google Scholar]
  48. He L., Zhou X., Wu Z., Feng Y., Liu D., Li T., Yin Y. Glutamine in suppression of lipopolysaccharide-induced piglet intestinal inflammation: the crosstalk between ampk activation and mitochondrial function. Anim Nutr. 2022;10:137–147. doi: 10.1016/j.aninu.2022.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Hendrikx T., Duan Y., Wang Y., Oh J.-H., Alexander L.M., Huang W., Stärkel P., Ho S.B., Gao B., Fiehn O., Emond P., Sokol H., Van Pijkeren J.-P., Schnabl B. Bacteria engineered to produce IL-22 in intestine induce expression of REG 3G to reduce ethanol-induced liver disease in mice. Gut. 2019;68:1504–1515. doi: 10.1136/gutjnl-2018-317232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Hezaveh K., Shinde R.S., Klotgen A., Halaby M.J., Lamorte S., Ciudad M.T., Quevedo R., Neufeld L., Liu Z.Q., Jin R., Grunwald B.T., Foerster E.G., Chaharlangi D., Guo M., Makhijani P., Zhang X., Pugh T.J., Pinto D.M., Co I.L., Mcguigan A.P., Jang G.H., Khokha R., Ohashi P.S., O'kane G.M., Gallinger S., Navarre W.W., Maughan H., Philpott D.J., Brooks D.G., Mcgaha T.L. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity. 2022;55:324–340 e8. doi: 10.1016/j.immuni.2022.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Hochbaum A.I., Kolodkin-Gal I., Foulston L., Kolter R., Aizenberg J., Losick R. Inhibitory effects of d-amino acids on staphylococcus aureus biofilm development. J Bacteriol. 2011;193:5616–5622. doi: 10.1128/JB.05534-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Huang J., Tong J., Zhang P., Zhou Y., Cui Y., Tan S., Wang Z., Yang F., Kochunov P., Chiappelli J., Tian B., Tian L., Tan Y., Hong L.E. Effects of neuroactive metabolites of the tryptophan pathway on working memory and cortical thickness in schizophrenia. Transl Psychiatry. 2021;11:198. doi: 10.1038/s41398-021-01311-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hubbard T.D., Murray I.A., Perdew G.H. Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation. Drug Metab Dispos. 2015;43:1522–1535. doi: 10.1124/dmd.115.064246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Hwang H.J., Dornbos P., Steidemann M., Dunivin T.K., Rizzo M., Lapres J.J. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol. 2016;304:121–132. doi: 10.1016/j.taap.2016.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ishii K., Ogaya T., Song Z., Iizuka H., Fukushima T. Changes in the plasma concentrations of D-kynurenine and kynurenic acid in rats after intraperitoneal administration of tryptophan enantiomers. Chirality. 2010;22:901–906. doi: 10.1002/chir.20850. [DOI] [PubMed] [Google Scholar]
  56. Jansman A.J.M., Cirot O., Corrent E., Lambert W., Ensink J., Van Diepen J.T.M. Interaction and imbalance between indispensable amino acids in young piglets. Animal. 2019;13:941–949. doi: 10.1017/S175173111800263X. [DOI] [PubMed] [Google Scholar]
  57. Jiao X., Ma W., Chen Y., Li Z. Effects of amino acids supplementation in low crude protein diets on growth performance, carcass traits and serum parameters in finishing gilts. Anim Sci J. 2016;87:1252–1257. doi: 10.1111/asj.12542. [DOI] [PubMed] [Google Scholar]
  58. Jun S., Kohen R., Cain K.C., Jarrett M.E., Heitkemper M.M. Associations of tryptophan hydroxylase gene polymorphisms with irritable bowel syndrome. Neuro Gastroenterol Motil. 2011;23:233–239. doi: 10.1111/j.1365-2982.2010.01623.x. e116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Kajdasz A., Warzych E., Derebecka N., Madeja Z.E., Lechniak D., Wesoly J., Pawlak P. Lipid stores and lipid metabolism associated gene expression in porcine and bovine parthenogenetic embryos revealed by fluorescent staining and RNA-seq. Int J Mol Sci. 2020;21:6488. doi: 10.3390/ijms21186488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Kato S., Oikawa T. A novel bifunctional amino acid racemase with multiple substrate specificity, maly from Lactobacillus sakei LT-13: genome-based identification and enzymological characterization. Front Microbiol. 2018;9:403. doi: 10.3389/fmicb.2018.00403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Kelly J.R., Borre Y., O' Brien C., Patterson E., El Aidy S., Deane J., Kennedy P.J., Beers S., Scott K., Moloney G., Hoban A.E., Scott L., Fitzgerald P., Ross P., Stanton C., Clarke G., Cryan J.F., Dinan T.G. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–118. doi: 10.1016/j.jpsychires.2016.07.019. [DOI] [PubMed] [Google Scholar]
  62. Kennedy P.J., Cryan J.F., Dinan T.G., Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112:399–412. doi: 10.1016/j.neuropharm.2016.07.002. [DOI] [PubMed] [Google Scholar]
  63. Kepert I., Fonseca J., Muller C., Milger K., Hochwind K., Kostric M., Fedoseeva M., Ohnmacht C., Dehmel S., Nathan P., Bartel S., Eickelberg O., Schloter M., Hartmann A., Schmitt-Kopplin P., Krauss-Etschmann S. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol. 2017;139:1525–1535. doi: 10.1016/j.jaci.2016.09.003. [DOI] [PubMed] [Google Scholar]
  64. Kerckhoffs A.P., Ter Linde J.J., Akkermans L.M., Samsom M. SERT and TpH-1 mRNA expression are reduced in irritable bowel syndrome patients regardless of visceral sensitivity state in large intestine. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1053–G1060. doi: 10.1152/ajpgi.00153.2011. [DOI] [PubMed] [Google Scholar]
  65. Kerkaert H.R., Cemin H.S., Woodworth J.C., Derouchey J.M., Dritz S.S., Tokach M.D., Goodband R.D., Haydon K.D., Hastad C.W., Post Z.B. Improving performance of finishing pigs with added valine, isoleucine, and tryptophan: validating a meta-analysis model. J Anim Sci. 2021;99:skab006. doi: 10.1093/jas/skab006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Keszthelyi D., Troost F.J., Masclee A.A. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neuro Gastroenterol Motil. 2009;21:1239–1249. doi: 10.1111/j.1365-2982.2009.01370.x. [DOI] [PubMed] [Google Scholar]
  67. Kim N.S., Torrez T., Langridge W. LPS enhances CTB-INSULIN induction of Ido1 and IL-10 synthesis in human dendritic cells. Cell Immunol. 2019;338:32–42. doi: 10.1016/j.cellimm.2019.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Kobayashi J. D-amino acids and lactic acid bacteria. Microorganisms. 2019;7:690. doi: 10.3390/microorganisms7120690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Koseki S., Nakamura N., Shiina T. Growth inhibition of Listeria monocytogenes, Salmonella enterica, and Escherichia coli O157:H7 by D-tryptophan as an incompatible solute. J Food Prot. 2015;78:819–824. doi: 10.4315/0362-028X.JFP-14-374. [DOI] [PubMed] [Google Scholar]
  70. Kwon W.B., Soto J.A., Stein H.H. 172 effects of dietary valine, isoleucine, and tryptophan supplementations to diets containing excess leucine from corn protein on growth performance of growing pigs. J Anim Sci. 2021;99(Suppl 1):61–62. [Google Scholar]
  71. Kwon W.B., Soto J.A., Stein H.H. Effects of dietary leucine and tryptophan on serotonin metabolism and growth performance of growing pigs. J Anim Sci. 2021;100 doi: 10.1093/jas/skab356. skab356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Lam H., Oh D.-C., Cava F., Takacs C.N., Clardy J., De Pedro M.A., Waldor M.K. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science. 2009;325:1552–1555. doi: 10.1126/science.1178123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Lam D.D., Garfield A.S., Marston O.J., Shaw J., Heisler L.K. Brain serotonin system in the coordination of food intake and body weight. Pharmacol Biochem Behav. 2010;97:84–91. doi: 10.1016/j.pbb.2010.09.003. [DOI] [PubMed] [Google Scholar]
  74. Lamas B., Natividad J.M., Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol. 2018;11:1024–1038. doi: 10.1038/s41385-018-0019-2. [DOI] [PubMed] [Google Scholar]
  75. Lamas B., Hernandez-Galan L., Galipeau H.J., Constante M., Clarizio A., Jury J., Breyner N.M., Caminero A., Rueda G., Hayes C.L., Mccarville J.L., Bermudez Brito M., Planchais J., Rolhion N., Murray J.A., Langella P., Loonen L.M.P., Wells J.M., Bercik P., Sokol H., Verdu E.F. Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Sci Transl Med. 2020;12 doi: 10.1126/scitranslmed.aba0624. [DOI] [PubMed] [Google Scholar]
  76. Lay D.C., Jr., Enneking S.A., Anderson N.C., Richert B.T., Sapkota A. Effect of short-term high tryptophan diet fed to sows on their subsequent piglet behavior. Transl Anim Sci. 2021;5:txab127. doi: 10.1093/tas/txab127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Lee J.H., Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34:426–444. doi: 10.1111/j.1574-6976.2009.00204.x. [DOI] [PubMed] [Google Scholar]
  78. Lee J.K., Liu D., Raven E.P., Jiang D., Liu P., Qin Q., Kulikowicz E., Santos P.T., Adams S., Zhang J., Koehler R.C., Martin L.J., Tekes A. Mean diffusivity in striatum correlates with acute neuronal death but not lesser neuronal injury in a pilot study of neonatal piglets with encephalopathy. J Magn Reson Imaging. 2020;52:1216–1226. doi: 10.1002/jmri.27181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Lee J.K., Liu D., Jiang D., Kulikowicz E., Tekes A., Liu P., Qin Q., Koehler R.C., Aggarwal M., Zhang J., Martin L.J. Fractional anisotropy from diffusion tensor imaging correlates with acute astrocyte and myelin swelling in neonatal swine models of excitotoxic and hypoxic-ischemic brain injury. J Comp Neurol. 2021;529:2750–2770. doi: 10.1002/cne.25121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Lee J.Y., Kim N., Yoon H., Shin C.M., Park Y.S., Lee D.H. A randomized, double-blinded, placebo-controlled study to evaluate the efficacy and safety of DA-9701 (motilitone) in patients with constipation-type irritable bowel syndrome and functional dyspepsia overlap: a pilot study. J Neurogastroenterol Motil. 2022;28:265–275. doi: 10.5056/jnm20236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Li Y.Z., Baidoo S.K., Johnston L.J., Anderson J.E. Effects of tryptophan supplementation on aggression among group-housed gestating sows. J Anim Sci. 2011;89:1899–1907. doi: 10.2527/jas.2010-3125. [DOI] [PubMed] [Google Scholar]
  82. Li G., Yao W., Jiang H. Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J Nutr. 2014;144:1887–1895. doi: 10.3945/jn.114.198531. [DOI] [PubMed] [Google Scholar]
  83. Li F., Duan Y., Li Y., Tang Y., Geng M., Oladele O.A., Kim S.W., Yin Y. Effects of dietary n-6:n-3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs. Br J Nutr. 2015;113:739–748. doi: 10.1017/S0007114514004346. [DOI] [PubMed] [Google Scholar]
  84. Li Y., Xia S., Jiang X., Feng C., Gong S., Ma J., Fang Z., Yin J., Yin Y. Gut microbiota and diarrhea: an updated review. Front Cell Infect Microbiol. 2021;11 doi: 10.3389/fcimb.2021.625210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Liang H., Dai Z., Kou J., Sun K., Chen J., Yang Y., Wu G., Wu Z. Dietary L-tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: implication of tryptophan-metabolizing microbiota. Int J Mol Sci. 2018;20:20. doi: 10.3390/ijms20010020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Liang H., Dai Z., Liu N., Ji Y., Chen J., Zhang Y., Yang Y., Li J., Wu Z., Wu G. Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets. Front Microbiol. 2018;9:1736. doi: 10.3389/fmicb.2018.01736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Liu Y., Yuan J.M., Zhang L.S., Zhang Y.R., Cai S.M., Yu J.H., Xia Z.F. Effects of tryptophan supplementation on growth performance, antioxidative activity, and meat quality of ducks under high stocking density. Poult Sci. 2015;94:1894–1901. doi: 10.3382/ps/pev155. [DOI] [PubMed] [Google Scholar]
  88. Liu G., Guan G., Fang J., Martinez Y., Chen S., Bin P., Duraipandiyan V., Gong T., Tossou M.C., Al-Dhabi N.A., Yin Y. Macleaya cordata extract decreased diarrhea score and enhanced intestinal barrier function in growing piglets. BioMed Res Int. 2016;2016 doi: 10.1155/2016/1069585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Liu L., Duan X., Wu J. L-tryptophan production in Escherichia coli improved by weakening the pta-acka pathway. PLoS One. 2016;11 doi: 10.1371/journal.pone.0158200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Liu Y., Wang X., Hou Y., Yin Y., Qiu Y., Wu G., Hu C.A. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models. Amino Acids. 2017;49:1277–1291. doi: 10.1007/s00726-017-2450-1. [DOI] [PubMed] [Google Scholar]
  91. Liu Y., Liang X., Dong W., Fang Y., Lv J., Zhang T., Fiskesund R., Xie J., Liu J., Yin X., Jin X., Chen D., Tang K., Ma J., Zhang H., Yu J., Yan J., Liang H., Mo S., Cheng F., Zhou Y., Zhang H., Wang J., Li J., Chen Y., Cui B., Hu Z.-W., Cao X., Xiao-Feng Qin F., Huang B. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell. 2018;33:480. doi: 10.1016/j.ccell.2018.02.005. 94.e7. [DOI] [PubMed] [Google Scholar]
  92. Liu J., Zhang Y., Li Y., Yan H., Zhang H. L-tryptophan enhances intestinal integrity in diquat-challenged piglets associated with improvement of redox status and mitochondrial function. Animals (Basel) 2019;9:266. doi: 10.3390/ani9050266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Liu J.B., Yan H.L., Cao S.C., Liu J., Li Z.X., Zhang H.F. The response of performance in grower and finisher pigs to diets formulated to different tryptophan to lysine ratios. Livest Sci. 2019;222:25–30. [Google Scholar]
  94. Liu G., Tao J., Lu J., Jia G., Zhao H., Chen X., Tian G., Cai J., Zhang R., Wang J. Dietary tryptophan supplementation improves antioxidant status and alleviates inflammation, endoplasmic reticulum stress, apoptosis, and pyroptosis in the intestine of piglets after lipopolysaccharide challenge. Antioxidants (Basel) 2022;11:872. doi: 10.3390/antiox11050872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Lobel L., Cao Y.G., Fenn K., Glickman J.N., Garrett W.S. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science. 2020;369:1518–1524. doi: 10.1126/science.abb3763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Louis P., Young P., Holtrop G., Flint H.J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-COA:Acetate COA-transferase gene. Environ Microbiol. 2010;12:304–314. doi: 10.1111/j.1462-2920.2009.02066.x. [DOI] [PubMed] [Google Scholar]
  97. Lund M.L., Egerod K.L., Engelstoft M.S., Dmytriyeva O., Theodorsson E., Patel B.A., Schwartz T.W. Enterochromaffin 5-HT cells - a major target for GLP-1 and gut microbial metabolites. Mol Metab. 2018;11:70–83. doi: 10.1016/j.molmet.2018.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Ma X., Yu M., Liu Z., Deng D., Cui Y., Tian Z., Wang G. Effect of amino acids and their derivatives on meat quality of finishing pigs. J Food Sci Technol. 2020;57:404–412. doi: 10.1007/s13197-019-04077-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Manzella C., Singhal M., Alrefai W.A., Saksena S., Dudeja P.K., Gill R.K. Serotonin is an endogenous regulator of intestinal CYP1A1 via AhR. Sci Rep. 2018;8:6103. doi: 10.1038/s41598-018-24213-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Mao X., Lv M., Yu B., He J., Zheng P., Yu J., Wang Q., Chen D. Correction to: the effect of dietary tryptophan levels on oxidative stress of liver induced by diquat in weaned piglets. J Anim Sci Biotechnol. 2021;12:116. doi: 10.1186/s40104-021-00631-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Martos D., Tuka B., Tanaka M., Vécsei L., Telegdy G. Memory enhancement with kynurenic acid and its mechanisms in neurotransmission. Biomedicines. 2022;10:849. doi: 10.3390/biomedicines10040849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Mcfarland L.V. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open. 2014;4 doi: 10.1136/bmjopen-2014-005047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Mello M.P.D., Toledo S.M.D., Haun M., Cilento G., Durán N. Excited indole-3-aldehyde from the peroxidase-catalyzed aerobic oxidation of indole-3-acetic acid. Reaction with and energy transfer to transfer ribonucleic acid. Biochemistry. 1980;19:5270–5275. doi: 10.1021/bi00564a019. [DOI] [PubMed] [Google Scholar]
  104. Meynier M., Baudu E., Rolhion N., Defaye M., Straube M., Daugey V., Modoux M., Wawrzyniak I., Delbac F., Villéger R., Méleine M., Borras Nogues E., Godfraind C., Barnich N., Ardid D., Poirier P., Sokol H., Chatel J.-M., Langella P., Livrelli V., Bonnet M., Carvalho F.A. AhR/IL-22 pathway as new target for the treatment of post-infectious irritable bowel syndrome symptoms. Gut Microb. 2022;14 doi: 10.1080/19490976.2021.2022997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Miao J., Adewole D., Liu S., Xi P., Yang C., Yin Y. Tryptophan supplementation increases reproduction performance, milk yield, and milk composition in lactating sows and growth performance of their piglets. J Agric Food Chem. 2019;67:5096–5104. doi: 10.1021/acs.jafc.9b00446. [DOI] [PubMed] [Google Scholar]
  106. Michael H., Srivastava V., Deblais L., Amimo J.O., Chepngeno J., Saif L.J., Rajashekara G., Vlasova A.N. The combined Escherichia coli nissle 1917 and tryptophan treatment modulates immune and metabolome responses to human rotavirus infection in a human infant fecal microbiota-transplanted malnourished gnotobiotic pig model. mSphere. 2022;7 doi: 10.1128/msphere.00270-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Millischer V., Heinzl M., Faka A., Resl M., Trepci A., Klammer C., Egger M., Dieplinger B., Clodi M., Schwieler L. Intravenous administration of LPS activates the kynurenine pathway in healthy male human subjects: a prospective placebo-controlled cross-over trial. J Neuroinflammation. 2021;18:158. doi: 10.1186/s12974-021-02196-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Molla G., Sacchi S., Bernasconi M., Pilone M.S., Fukui K., Polegioni L. Characterization of human D-amino acid oxidase. FEBS Lett. 2006;580:2358–2364. doi: 10.1016/j.febslet.2006.03.045. [DOI] [PubMed] [Google Scholar]
  109. Monnerie S., Comte B., Ziegler D., Morais J.A., Pujos-Guillot E., Gaudreau P. Metabolomic and lipidomic signatures of metabolic syndrome and its physiological components in adults: a systematic review. Sci Rep. 2020;10:669. doi: 10.1038/s41598-019-56909-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Mosnier E., Le Floc'h N., Etienne M., Ramaekers P., Seve B., Pere M.C. Reduced feed intake of lactating primiparous sows is associated with increased insulin resistance during the peripartum period and is not modified through supplementation with dietary tryptophan. J Anim Sci. 2010;88:612–625. doi: 10.2527/jas.2008-1768. [DOI] [PubMed] [Google Scholar]
  111. Moyer B.J., Rojas I.Y., Kerley-Hamilton J.S., Hazlett H.F., Nemani K.V., Trask H.W., West R.J., Lupien L.E., Collins A.J., Ringelberg C.S., Gimi B., Kinlaw W.B., Tomlinson C.R. Inhibition of the aryl hydrocarbon receptor prevents western diet-induced obesity. Model for ahr activation by kynurenine via oxidized-LDL, TLR 2/4,TGFβ, and Ido1. Toxicol Appl Pharmacol. 2016;300:13–24. doi: 10.1016/j.taap.2016.03.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Muller N., Myint A.M., Krause D., Weidinger E., Schwarz M.J. Anti-inflammatory treatment in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:146–153. doi: 10.1016/j.pnpbp.2012.11.008. [DOI] [PubMed] [Google Scholar]
  113. Muneer A. Kynurenine pathway of tryptophan metabolism in neuropsychiatric disorders: pathophysiologic and therapeutic considerations. Clin Psychopharmacol Neurosci. 2020;18:507–526. doi: 10.9758/cpn.2020.18.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Munn A.L., Weaver A.C., Van Wettere W. Supplementary tryptophan fed to sows prior to and after farrowing to improve piglet growth and survival. Animals (Basel) 2021;11:2540. doi: 10.3390/ani11092540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Naatjes M., Htoo J.K., Walter K., Tölle K.H., Susenbeth A. Effect of dietary tryptophan to lysine ratio on growth of young pigs fed wheat–barley or corn based diets. Livest Sci. 2014;163:102–109. [Google Scholar]
  116. Notarangelo F.M., Wang X.D., Horning K.J., Schwarcz R. Role of D-amino acid oxidase in the production of kynurenine pathway metabolites from D-tryptophan in mice. J Neurochem. 2016;136:804–814. doi: 10.1111/jnc.13455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Opitz C.A., Litzenburger U.M., Sahm F., Ott M., Tritschler I., Trump S., Schumacher T., Jestaedt L., Schrenk D., Weller M., Jugold M., Guillemin G.J., Miller C.L., Lutz C., Radlwimmer B., Lehmann I., Von Deimling A., Wick W., Platten M. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197–203. doi: 10.1038/nature10491. [DOI] [PubMed] [Google Scholar]
  118. O’donnell M.P., Fox B.W., Chao P.-H., Schroeder F.C., Sengupta P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature. 2020;583:415–420. doi: 10.1038/s41586-020-2395-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Pagire S.H., Pagire H.S., Park K.Y., Bae E.J., Kim K.E., Kim M., Yoon J., Parameswaran S., Choi J.H., Park S., Jeon J.H., Song J.S., Bae M.A., Lee I.K., Kim H., Suh J.M., Ahn J.H. Identification of new non-BBB permeable tryptophan hydroxylase inhibitors for treating obesity and fatty liver disease. Molecules. 2022;27:3417. doi: 10.3390/molecules27113417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Poletto R., Kretzer F.C., Hotzel M.J. Minimizing aggression during mixing of gestating sows with supplementation of a tryptophan-enriched diet. Physiol Behav. 2014;132:36–43. doi: 10.1016/j.physbeh.2014.04.043. [DOI] [PubMed] [Google Scholar]
  121. Proietti E., Rossini S., Grohmann U., Mondanelli G. Polyamines and kynurenines at the intersection of immune modulation. Trends Immunol. 2020;41:1037–1050. doi: 10.1016/j.it.2020.09.007. [DOI] [PubMed] [Google Scholar]
  122. Rao Z., Li J., Shi B., Zeng Y., Liu Y., Sun Z., Wu L., Sun W., Tang Z. Dietary tryptophan levels impact growth performance and intestinal microbial ecology in weaned piglets via tryptophan metabolites and intestinal antimicrobial peptides. Animals (Basel) 2021;11:817. doi: 10.3390/ani11030817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Raskov H., Burcharth J., Pommergaard H.-C., Rosenberg J. Irritable bowel syndrome, the microbiota and the gut-brain axis. Gut Microb. 2016;7:365–383. doi: 10.1080/19490976.2016.1218585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Reichardt N., Duncan S.H., Young P., Belenguer A., Mcwilliam Leitch C., Scott K.P., Flint H.J., Louis P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8:1323–1335. doi: 10.1038/ismej.2014.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Rejdak R., Zielinska E., Shenk Y., Turski W.A., Okuno E., Zarnowski T., Zagorski Z., Zrenner E., Kohler K. Ontogenic changes of kynurenine aminotransferase i activity and its expression in the chicken retina. Vision Res. 2003;43:1513–1517. doi: 10.1016/s0042-6989(03)00233-5. [DOI] [PubMed] [Google Scholar]
  126. Rogers S.R., Pesti G.M. Effects of tryptophan supplementation to a maize-based diet on lipid metabolism in laying hens. Br Poult Sci. 1992;33:195–200. doi: 10.1080/00071669208417457. [DOI] [PubMed] [Google Scholar]
  127. Rossi F., Miggiano R., Ferraris D.M., Rizzi M. The synthesis of kynurenic acid in mammals: an updated kynurenine aminotransferase structural katalogue. Front Mol Biosci. 2019;6:7. doi: 10.3389/fmolb.2019.00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Saitow F., Takumi T., Suzuki H. Upregulated 5-HT1A receptor-mediated currents in the prefrontal cortex layer 5 neurons in the 15q11-13 duplication mouse model of autism. Mol Brain. 2020;13:115. doi: 10.1186/s13041-020-00655-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Sardar P., Kempken F. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in neurospora crassa. PLoS One. 2018;13 doi: 10.1371/journal.pone.0192293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Sasabe J., Suzuki M. Distinctive roles of D-amino acids in the homochiral world: chirality of amino acids modulates mammalian physiology and pathology. Keio J Med. 2018;68:1–16. doi: 10.2302/kjm.2018-0001-IR. [DOI] [PubMed] [Google Scholar]
  131. Sasabe J., Miyoshi Y., Rakoff-Nahoum S., Zhang T., Mita M., Davis B.M., Hamase K., Waldor M.K. Interplay between microbial d-amino acids and host D-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat Microbiol. 2016;1 doi: 10.1038/nmicrobiol.2016.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Sato H., Miura M., Fujieda T., Taciak M., Kikusato M., Sato K., Toyomizu M. Growth performance responses to increased tryptophan supplementation in growing barrows fed three different very low crude protein corn and soybean meal-based diets fortified with essential amino acids. Anim Sci J. 2021;92 doi: 10.1111/asj.13605. [DOI] [PubMed] [Google Scholar]
  133. Savitz J. The kynurenine pathway: a finger in every pie. Mol Psychiatry. 2020;25:131–147. doi: 10.1038/s41380-019-0414-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Schepper J.D., Collins F., Rios-Arce N.D., Kang H.J., Schaefer L., Gardinier J.D., Raghuvanshi R., Quinn R.A., Britton R., Parameswaran N., Mccabe L.R. Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis. J Bone Miner Res. 2020;35:801–820. doi: 10.1002/jbmr.3947. [DOI] [PubMed] [Google Scholar]
  135. Scott K.P., Martin J.C., Campbell G., Mayer C.D., Flint H.J. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium "roseburia inulinivorans". J Bacteriol. 2006;188:4340–4349. doi: 10.1128/JB.00137-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Seki N., Kimizuka T., Gondo M., Yamaguchi G., Sugiura Y., Akiyama M., Yakabe K., Uchiyama J., Higashi S., Haneda T., Suematsu M., Hase K., Kim Y.G. D-tryptophan suppresses enteric pathogen and pathobionts and prevents colitis by modulating microbial tryptophan metabolism. iScience. 2022;25 doi: 10.1016/j.isci.2022.104838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Semak I., Naumova M., Korik E., Terekhovich V., Wortsman J., Slominski A. A novel metabolic pathway of melatonin: oxidation by cytochrome c. Biochem. 2005;44:9300–9307. doi: 10.1021/bi050202d. [DOI] [PubMed] [Google Scholar]
  138. Shah A., Mathur Y., Hazra A.B. Double agent indole-3-acetic acid: mechanistic analysis of indole-3-acetaldehyde dehydrogenase alda that synthesizes iaa, an auxin that aids bacterial virulence. Biosci Rep. 2021:41. doi: 10.1042/BSR20210598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Sharma A., Qazi A., Priyamvada S., Kumar A., Ceh J., Bhalala J., Alrubaee M., Dudeja S., Weber C., Alrefai W., Saksena S., Dudeja P., R G Fecal metabolomic analysis of sert deficient mice under basal conditions and chronic colitis. Inflamm Bowel Dis. 2021;27:S38–S39. [Google Scholar]
  140. Sharon G., Cruz N.J., Kang D.-W., Gandal M.J., Wang B., Kim Y.-M., Zink E.M., Casey C.P., Taylor B.C., Lane C.J., Bramer L.M., Isern N.G., Hoyt D.W., Noecker C., Sweredoski M.J., Moradian A., Borenstein E., Jansson J.K., Knight R., Metz T.O., Lois C., Geschwind D.H., Krajmalnik-Brown R., Mazmanian S.K. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019;177:1600–1618. doi: 10.1016/j.cell.2019.05.004. e17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Spacova I., Van Beeck W., Seys S., Devos F., Vanoirbeek J., Vanderleyden J., Ceuppens J., Petrova M., Lebeer S. Lactobacillus rhamnosusprobiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microb. 2020;11:1729–1744. doi: 10.1080/19490976.2020.1766345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Stacchiotti A., Grossi I., Garcia-Gomez R., Patel G.A., Salvi A., Lavazza A., De Petro G., Monsalve M., Rezzani R. Melatonin effects on non-alcoholic fatty liver disease are related to microrna-34a-5p/Sirt1 axis and autophagy. Cells. 2019;8:1053. doi: 10.3390/cells8091053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Stakenborg N., Labeeuw E., Gomez-Pinilla P.J., De Schepper S., Aerts R., Goverse G., Farro G., Appeltans I., Meroni E., Stakenborg M., Viola M.F., Gonzalez-Dominguez E., Bosmans G., Alpizar Y.A., Wolthuis A., D’hoore A., Van Beek K., Verheijden S., Verhaegen M., Derua R., Waelkens E., Moretti M., Gotti C., Augustijns P., Talavera K., Vanden Berghe P., Matteoli G., Boeckxstaens G.E. Preoperative administration of the 5-HT4 receptor agonist prucalopride reduces intestinal inflammation and shortens postoperative ileus via cholinergic enteric neurons. Gut. 2019;68:1406–1416. doi: 10.1136/gutjnl-2018-317263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Sterndale S.O., Miller D.W., Mansfield J.P., Kim J.C., Pluske J.R. Increasing dietary tryptophan in conjunction with decreasing other large neutral amino acids increases weight gain and feed intake in weaner pigs regardless of experimental infection with enterotoxigenic escherichia coli. J Anim Sci. 2020;98 doi: 10.1093/jas/skaa190. skaa190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Sun Y., Teng T., Bai G., Qiu S., Shi B., Ju D., Zhao X. Protein-restricted diet balanced for lysine, methionine, threonine, and tryptophan for nursery pigs elicits subsequent compensatory growth and has long term effects on protein metabolism and organ development. Anim Feed Sci Tech. 2020:270. [Google Scholar]
  146. Sun H., Gu T., Li G., Chen L., Tian Y., Xu W., Zeng T., Lu L. Effects of compound probiotics on growth performance, serum biochemical and immune indices, antioxidant capacity, and intestinal tissue morphology of shaoxing duck. Animals (Basel) 2022;12:3219. doi: 10.3390/ani12223219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Szelest M., Walczak K., Plech T. A new insight into the potential role of tryptophan-derived ahr ligands in skin physiological and pathological processes. Int J Mol Sci. 2021;22:1104. doi: 10.3390/ijms22031104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Taj A., Jamil N. Bioconversion of tyrosine and tryptophan derived biogenic amines by neuropathogenic bacteria. Biomolecules. 2018;8:10. doi: 10.3390/biom8010010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Tesoriere L., Avellone G., Ceraulo L., D'arpa D., Allegra M., Livrea M.A. Oxidation of melatonin by oxoferryl hemoglobin: a mechanistic study. Free Radic Res. 2001;35:633–642. doi: 10.1080/10715760100301161. [DOI] [PubMed] [Google Scholar]
  150. Thomas M., Ciuclan L., Hussey M.J., Press N.J. Targeting the serotonin pathway for the treatment of pulmonary arterial hypertension. Pharmacol Ther. 2013;138:409–417. doi: 10.1016/j.pharmthera.2013.02.002. [DOI] [PubMed] [Google Scholar]
  151. Tossou M.C., Liu H., Bai M., Chen S., Cai Y., Duraipandiyan V., Liu H., Adebowale T.O., Al-Dhabi N.A., Long L., Tarique H., Oso A.O., Liu G., Yin Y. Effect of high dietary tryptophan on intestinal morphology and tight junction protein of weaned pig. BioMed Res Int. 2016;2016 doi: 10.1155/2016/2912418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Trevisi P., Melchior D., Mazzoni M., Casini L., De Filippi S., Minieri L., Lalatta-Costerbosa G., Bosi P. A tryptophan-enriched diet improves feed intake and growth performance of susceptible weanling pigs orally challenged with escherichia coli k88. J Anim Sci. 2009;87:148–156. doi: 10.2527/jas.2007-0732. [DOI] [PubMed] [Google Scholar]
  153. Valini GaDC, Arnaut P.R., França I., Ortiz M.T., Oliveira M.J.K.D., Melo A.D.B., et al. Increased dietary Trp, Thr, and Met supplementation improves growth performance and protein deposition of salmonella-challenged growing pigs under poor housing conditions. J Anim Sci. 2023;101:skad141. doi: 10.1093/jas/skad141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Varvel H.J. Southern llinois University Carbondale; 2019. Tryptophan supplementation during lactation on sow productivity. [Google Scholar]
  155. Walczak K., Kazimierczak P., Szalast K., Plech T. UVB radiation and selected tryptophan-derived AhR ligands—potential biological interactions in melanoma cells. Int J Mol Sci. 2021;22:7500. doi: 10.3390/ijms22147500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Walther D.J., Bader M. A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 2003;66:1673–1680. doi: 10.1016/s0006-2952(03)00556-2. [DOI] [PubMed] [Google Scholar]
  157. Wang S., Peng Q., Jia H.M., Zeng X.F., Zhu J.L., Hou C.L., Liu X.T., Yang F.J., Qiao S.Y. Prevention of Escherichia coli infection in broiler chickens with lactobacillus plantarum B1. Poult Sci. 2017;96:2576–2586. doi: 10.3382/ps/pex061. [DOI] [PubMed] [Google Scholar]
  158. Wang K., Cao G., Zhang H., Li Q., Yang C. Effects of clostridium butyricum and enterococcus faecalis on growth performance, immune function, intestinal morphology, volatile fatty acids, and intestinal flora in a piglet model. Food Funct. 2019;10:7844–7854. doi: 10.1039/c9fo01650c. [DOI] [PubMed] [Google Scholar]
  159. Wang J., Yao L., Su J., Fan R., Zheng J., Han Y. Effects of Lactobacillus plantarum and its fermentation products on growth performance, immune function, intestinal pH, and cecal microorganisms of lingnan yellow chicken. Poult Sci. 2023;102 doi: 10.1016/j.psj.2023.102610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Wouters M.M., Farrugia G., Schemann M. 5-HT receptors on interstitial cells of cajal, smooth muscle and enteric nerves. Neurogastroenterology Motil. 2007;19:5–12. doi: 10.1111/j.1365-2982.2007.00963.x. [DOI] [PubMed] [Google Scholar]
  161. Xia D., Mo Q., Yang L., Wang W. Crosstalk between mycotoxins and intestinal microbiota and the alleviation approach via microorganisms. Toxins (Basel) 2022;14:859. doi: 10.3390/toxins14120859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Xing Y., Wang S., Fan J., Oso A.O., Kim S.W., Xiao D., Yang T., Liu G., Jiang G., Li Z., Li L., Zhang B. Effects of dietary supplementation with lysine-yielding bacillus subtilis on gut morphology, cecal microflora, and intestinal immune response of linwu ducks. J Anim Sci. 2015;93:3449–3457. doi: 10.2527/jas.2014-8090. [DOI] [PubMed] [Google Scholar]
  163. Xu C.X., Wang C., Zhang Z.M., Jaeger C.D., Krager S.L., Bottum K.M., Liu J., Liao D.F., Tischkau S.A. Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int J Obes (Lond) 2015;39:1300–1309. doi: 10.1038/ijo.2015.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Xu K., Bai M., Bin P., Duan Y., Wu X., Liu H., Yin Y. Negative effects on newborn piglets caused by excess dietary tryptophan in the morning in sows. J Sci Food Agric. 2019;99:3005–3016. doi: 10.1002/jsfa.9514. [DOI] [PubMed] [Google Scholar]
  165. Yakah W., Singh P., Brown J., Stoll B., Burrin D., Premkumar M.H., Otu H.H., Gu X., Dillon S.T., Libermann T.A., Freedman S.D., Martin C.R. Parenteral lipid emulsions induce unique ileal fatty acid and metabolomic profiles but do not increase the risk of necrotizing enterocolitis in preterm pigs. Am J Physiol Gastrointest Liver Physiol. 2021;320:G227–G239. doi: 10.1152/ajpgi.00311.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Yin J., Zhang B., Yu Z., Hu Y., Lv H., Ji X., Wang J., Peng B., Wang S. Ameliorative effect of dietary tryptophan on neurodegeneration and inflammation in d-galactose-induced aging mice with the potential mechanism relying on AMPK/SIRT1/PGC-1α pathway and gut microbiota. J Agric Food Chem. 2021;69:4732–4744. doi: 10.1021/acs.jafc.1c00706. [DOI] [PubMed] [Google Scholar]
  167. Yoshida J., Shigemura A., Ogino Y., Denbow D.M., Furuse M. Two receptors are involved in the central functions of kynurenic acid under an acute stress in neonatal chicks. Neuroscience. 2013;248:194–200. doi: 10.1016/j.neuroscience.2013.06.005. [DOI] [PubMed] [Google Scholar]
  168. Zarnowski T., Rejdak R., Zagorski Z., Juenemann A.G., Zrenner E., Kocki T., Urbanska E.M., Turski W.A. Content of kynurenic acid and activity of kynurenine aminotransferases in mammalian eyes. Ophthalmic Res. 2004;36:124–128. doi: 10.1159/000076893. [DOI] [PubMed] [Google Scholar]
  169. Ze L., Hai-Yuan Y., Ying W., Man-Ling Z., Xiao-Rui L., Qiang X., Li-Ning Z., Yong J., Li-Sha M., Yan L., Rong-Feng L., Yi R., Yi-Fan D. Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas 9-mediated gene targeting. J Biomed Res. 2017;31:445–452. doi: 10.7555/JBR.31.20170026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Zelante T., Iannitti R.G., Cunha C., De Luca A., Giovannini G., Pieraccini G., Zecchi R., D'angelo C., Massi-Benedetti C., Fallarino F., Carvalho A., Puccetti P., Romani L. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–385. doi: 10.1016/j.immuni.2013.08.003. [DOI] [PubMed] [Google Scholar]
  171. Zhang L.S., Davies S.S. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 2016;8:46. doi: 10.1186/s13073-016-0296-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Zhang C., Shao H., Li D., Xiao N., Tan Z. Role of tryptophan-metabolizing microbiota in mice diarrhea caused by folium sennae extracts. BMC Microbiol. 2020;20:185. doi: 10.1186/s12866-020-01864-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Zhang R., Huang G., Ren Y., Wang H., Ye Y., Guo J., Wang M., Zhu W., Yu K. Effects of dietary indole-3-carboxaldehyde supplementation on growth performance, intestinal epithelial function, and intestinal microbial composition in weaned piglets. Front Nutr. 2022;9 doi: 10.3389/fnut.2022.896815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Zhang S., Funahashi Y., Tanaka S., Okubo T., Thapa J., Nakamura S., Higashi H., Yamaguchi H. Chlamydia trachomatis relies on the scavenger role of aryl hydrocarbon receptor with detyrosinated tubulin for its intracellular growth, but this is impaired by excess indole. Microbes Infect. 2023;25 doi: 10.1016/j.micinf.2022.105097. [DOI] [PubMed] [Google Scholar]

Articles from Animal Nutrition are provided here courtesy of KeAi Publishing

RESOURCES