Skip to main content
American Journal of Alzheimer's Disease and Other Dementias logoLink to American Journal of Alzheimer's Disease and Other Dementias
. 2007 Feb-Mar;22(1):37–41. doi: 10.1177/1533317506295655

The Genetics of Alzheimer’s Disease

Chen K Chai 1
PMCID: PMC10697204  PMID: 17534000

Abstract

The genetics of Alzheimer’s disease is produced by 3 essentially interactive gene groups: (1) APP and presenilin 1 and 2; (2) APOE E2, E3, and E4; (3) genes on chromosomes 9, 10, 12, etc. If any gene in (1) mutates, beta amyloid (Aβ) increases sharply beyond what the genes of (3) can remove, with early-onset Alzheimer’s disease the result. With retention of Aβ by E4 in (2), Alzheimer’s disease might result even though (1) and (3) are normal. If any gene in (3) mutates, the level of Aβ will rise, but because many genes are involved in Aβ removal, late-onset Alzheimer’s disease would be detected only eventually.

Keywords: interaction, gene activity, gene groups, physiologic balance, normal state vs mutation

Full Text

The Full Text of this article is available as a PDF (59.6 KB).

References

  1. Schellenberg GD, Genetic dissection of Alzheimer disease, a heterogeneous disorder. Proc Natl Acad Sci U S A. 1995;92: 8552-8559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Rocchi A, Pellegrini S, Siciliano G, Murri L. Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull. 2003;61: 1-24. [DOI] [PubMed] [Google Scholar]
  3. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297: 353-356. [DOI] [PubMed] [Google Scholar]
  4. Esteban JA. Living with the enemy: a physiological role for the beta-amyloid peptide. Trends Neurosci. 2004;27: 1-3. [DOI] [PubMed] [Google Scholar]
  5. Kamenetz F, Tomita T, Hsieh H, et al. APP processing and synaptic function. Neuron. 2003;37: 925-937. [DOI] [PubMed] [Google Scholar]
  6. Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325: 733-736. [DOI] [PubMed] [Google Scholar]
  7. Lemaire HG, Salbaum JM, Multhaup G, et al. The PreA4(695) precursor protein of Alzheimer’s disease A4 amyloid is encoded by 16 exons. Nucleic Acids Res. 1989;17: 517-522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Verbeek MM, Ruiter DJ, de Waal RM. The role of amyloid in the pathogenesis of Alzheimer’s disease. Biol Chem. 1997;378: 937-950. [DOI] [PubMed] [Google Scholar]
  9. Vassar R, Bennett BD, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286: 735-741. [DOI] [PubMed] [Google Scholar]
  10. van Duinen SG, Castano EM, Prelli F, et al. Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci U S A. 1987;84: 5991-5994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991; 349: 704-706. [DOI] [PubMed] [Google Scholar]
  12. Mullan M, Houlden H, Windelspecht M, et al. A locus for familial early-onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the alpha 1-antichymotrypsin gene. Nat Genet. 1992;2: 340-342. [DOI] [PubMed] [Google Scholar]
  13. Wolfe MS, Citron M, Diehl TS, et al. A substrate-based difluoro ketone selectively inhibits Alzheimer’s gamma-secretase activity. J Med Chem. 1998;41: 6-9. [DOI] [PubMed] [Google Scholar]
  14. Weidemann A, Paliga K, Durrwang U, et al. Formation of stable complexes between two Alzheimer’s disease gene products: presenilin-2 and beta-amyloid precursor protein. Nat Med. 1997;3: 328-332. [DOI] [PubMed] [Google Scholar]
  15. Xia W, Zhang J, Perez R, Koo EH, Selkoe DJ: Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer disease. Proc Natl Acad Sci U S A. 1997; 94: 8208-8213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cruts M, van Duijn CM, Backhovens H, et al. Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum Mol Genet. 1998;7: 43-51. [DOI] [PubMed] [Google Scholar]
  17. Hook VY, Reisine TD. Cysteine proteases are the major beta-secretase in the regulated secretory pathway that provides most of the beta-amyloid in Alzheimer’s disease: role of BACE 1 in the constitutive secretory pathway. J Neurosci Res. 2003;74: 393-405. [DOI] [PubMed] [Google Scholar]
  18. Siest G, Pillot T, Regis-Bailly A, et al. Apolipoprotein E: an important gene and protein to follow in laboratory medicine. Clin Chem. 1995;41: 1068-1086. [PubMed] [Google Scholar]
  19. Olaisen B, Teisberg P, Gedde-Dahl T Jr. The locus for apolipoprotein E (apoE) is linked to the complement component C3 (C3) locus on chromosome 19 in man. Hum Genet. 1982;62: 233-236. [DOI] [PubMed] [Google Scholar]
  20. Lusis AJ, Heinzmann C, Sparkes RS, et al. Regional mapping of human chromosome 19: organization of genes for plasma lipid transport (APOC1, -C2, and -E and LDLR) and the genes C3, PEPD, and GPI. Proc Natl Acad Sci U S A. 1986;83: 3929-3933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wiesgraber KH. Apolipoprotein E: structure-function relationships. Adv Prot Chem. 1994;45: 249-320. [DOI] [PubMed] [Google Scholar]
  22. Zannis VI, Just PW, Breslow JL. Human apolipoprotein E isoprotein subclasses are genetically determined. Am J Hum Genet. 1981;33: 11-24. [PMC free article] [PubMed] [Google Scholar]
  23. Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993; 261: 921-923. [DOI] [PubMed] [Google Scholar]
  24. Hawi Z, Sheehan K, Lynch A, et al. Late onset Alzheimer’s disease and apolipoprotein association in the Irish population: relative risk and attributable fraction. Ir J Med Sci. 2003;172: 74-76. [DOI] [PubMed] [Google Scholar]
  25. Sanan DA, Weisgraber KH, Russell SJ, et al. Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest. 1994;94: 860-869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Chalmers K, Wilcock GK, Love S. APOE epsilon 4 influences the pathological phenotype of Alzheimer’s disease by favouring cerebrovascular over parenchymal accumulation of A beta protein. Neuropathol Appl Neurobiol. 2003;29: 231-238. [DOI] [PubMed] [Google Scholar]
  27. Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human tau gene. Biochemistry. 1992;31: 10626-10633. [DOI] [PubMed] [Google Scholar]
  28. Poorkaj P, Bird TD, Wijsman E, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. 1998;43: 815-825. [DOI] [PubMed] [Google Scholar]
  29. Hardy J, Duff K, Hardy KG, Perez-Tur J, Hutton M. Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to tau. Nat Neurosci. 1998;1: 355-358. [DOI] [PubMed] [Google Scholar]
  30. Conrad C, Vianna C, Freeman M, Davies P. A polymorphic gene nested within an intron of the tau gene: implications for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2002;99: 7751-7756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lewis J, Dickson DW, Lin WL, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293: 1487-1491. [DOI] [PubMed] [Google Scholar]
  32. Gamblin TC, Chen F, Zambrano A, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2003; 100: 10032-10037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ertekin-Taner N, Graff-Radford N, Younkin LH, et al. Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science. 2000;290: 2303-2304. [DOI] [PubMed] [Google Scholar]
  34. Harold D, Peirce T, Moskvina V, et al. Sequence variation in the CHAT locus shows no association with late-onset Alzheimer’s disease. Hum Genet. 2003;113: 258-267. [DOI] [PubMed] [Google Scholar]
  35. Vekrellis K, Ye Z, Qiu WQ, et al. Neurons regulate extra-cellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci. 2000;20: 1657-1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pericak-Vance MA, Bass MP, Yamaoka LH, et al. Complete genomic screen in late-onset familial Alzheimer disease. Evidence for a new locus on chromosome 12. JAMA. 1997; 278: 1237-1241. [PubMed] [Google Scholar]
  37. Mayeux R, Lee JH, Romas SN, et al. Chromosome-12 mapping of late-onset Alzheimer disease among Caribbean Hispanics. Am J Hum Genet. 2002;70: 237-243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scott WK, Hauser ER, Schmechel DE, et al. Ordered-subsets linkage analysis detects novel Alzheimer disease loci on chromosomes 2q34 and 15q22. Am J Hum Genet. 2003;73: 1041-1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Selkoe DJ. Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci. 1994; 17: 489-517. [DOI] [PubMed] [Google Scholar]
  40. Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β -protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A. 2003;100: 4162-4167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Song ES, Juliano MA, Juliano L, Hersh LB. Substrate activation of insulin-degrading enzyme (insulysin). A potential target for drug development. J Biol Chem. 2003;278: 49789-49794. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Alzheimer's Disease and Other Dementias are provided here courtesy of SAGE Publications

RESOURCES