Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Jun 6:2023.11.27.568916. Originally published 2023 Nov 28. [Version 3] doi: 10.1101/2023.11.27.568916

Paleolithic Gene Duplications Primed Adaptive Evolution of Human Amylase Locus Upon Agriculture

Feyza Yilmaz, Charikleia Karageorgiou, Kwondo Kim, Petar Pajic, Kendra Scheer; Human Genome Structural Variation Consortium, Christine R Beck, Ann-Marie Torregrossa, Charles Lee, Omer Gokcumen
PMCID: PMC10705236  PMID: 38077078

Abstract

Starch digestion is a cornerstone of human nutrition. The amylase genes code for the starch-digesting amylase enzyme. Previous studies suggested that the salivary amylase (AMY1) gene copy number increased in response to agricultural diets. However, the lack of nucleotide resolution of the amylase locus hindered detailed evolutionary analyses. Here, we have resolved this locus at nucleotide resolution in 98 present-day humans and identified 30 distinct haplotypes, revealing that the coding sequences of all amylase gene copies are evolving under negative selection. The phylogenetic reconstruction suggested that haplotypes with three AMY1 gene copies, prevalent across all continents and constituting about 70% of observed haplotypes, originated before the out-of-Africa migrations of ancestral modern humans. Using thousands of unique 25 base pair sequences across the amylase locus, we showed that additional AMY1 gene copies existed in the genomes of four archaic hominin genomes, indicating that the initial duplication of this locus may have occurred as far back 800,000 years ago. We similarly analyzed 73 ancient human genomes dating from 300 - 45,000 years ago and found that the AMY1 copy number variation observed today existed long before the advent of agriculture (~10,000 years ago), predisposing this locus to adaptive increase in the frequency of higher amylase copy number with the spread of agriculture. Mechanistically, the common three-copy haplotypes seeded non-allelic homologous recombination events that appear to be occurring at one of the fastest rates seen for tandem repeats in the human genome. Our study provides a comprehensive population-level understanding of the genomic structure of the amylase locus, identifying the mechanisms and evolutionary history underlying its duplication and copy number variability in relation to the onset of agriculture.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES