Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Nov 27:2023.11.27.568863. [Version 1] doi: 10.1101/2023.11.27.568863

Seeding the meiotic DNA break machinery and initiating recombination on chromosome axes

Ihsan Dereli, Vladyslav Telychko, Frantzeskos Papanikos, Kavya Raveendran, Jiaqi Xu, Michiel Boekhout, Marcello Stanzione, Benjamin Neuditschko, Naga Sailaja Imjeti, Elizaveta Selezneva, Hasibe Tuncay Erbasi, Sevgican Demir, Teresa Giannattasio, Marc Gentzel, Anastasiia Bondarieva, Michelle Stevense, Marco Barchi, Arp Schnittger, John R Weir, Franz Herzog, Scott Keeney, Attila Tóth
PMCID: PMC10705248  PMID: 38077023

Summary

Programmed DNA double-strand break (DSB) formation is a unique meiotic feature that initiates recombination-mediated linking of homologous chromosomes, thereby enabling chromosome number halving in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We discovered in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms, which are based on a DBF4-dependent kinase (DDK)–modulated interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES