Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Dec 7:2023.11.29.568318. [Version 2] doi: 10.1101/2023.11.29.568318

Aβ Amyloid Scaffolds the Accumulation of Matrisome and Additional Proteins in Alzheimer′s Disease

Yona Levites, Eric B Dammer, Yong Ran, Wangchen Tsering, Duc Duong, Measho Abreha, Joshna Gadhavi, Kiara Lolo, Jorge Trejo-Lopez, Jennifer L Phillips, Andrea Iturbe, Aya Erqiuzi, Brenda Dawn Moore, Danny Ryu, Aditya Natu, Kristy D Dillon, Jose Torrellas, Corey Moran, Thomas B Ladd, Kazi Farhana Afroz, Tariful Islam, Jaishree Jagirdar, Cory C Funk, Max Robinson, David R Borchelt, Nilufer Ertekin-Taner, Jeffrey W Kelly, Frank L Heppner, Erik CB Johnson, Karen McFarland, Allan L Levey, Stefan Prokop, Nicholas T Seyfried, Todd E Golde
PMCID: PMC10705437  PMID: 38076912

Abstract

We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A β ; in plaques and in CAA; further, recombinant MDK and PTN enhance A β ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A β 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A β ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES