Summary
Metastatic castration-resistant prostate cancer (mCRPC) resistant to androgen receptor (AR)-targeted agents is often lethal. Unfortunately, biomarkers for this deadly disease remain under investigation, and underpinning mechanisms are ill-understood. Here, we applied deep sequencing to ∼100 mCRPC patients prior to the initiation of first-line AR-targeted therapy, which detected AR /enhancer alterations in over a third of patients, which correlated with lethality. To delve into the mechanism underlying why these patients with cell-free AR /enhancer alterations developed more lethal prostate cancer, we next performed genome-wide cell-free DNA epigenomics. Strikingly, we found that binding sites for transcription factors associated with developmental stemness were nucleosomally more accessible. These results were corroborated using cell-free DNA methylation data, as well as tumor RNA sequencing from a held-out cohort of mCRPC patients. Thus, we validated the importance of AR /enhancer alterations as a prognostic biomarker in lethal mCRPC, and showed that the underlying mechanism for lethality involves reprogramming developmental states toward increased stemness.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.
