Skip to main content
. 2023 Nov 20;9(12):e22409. doi: 10.1016/j.heliyon.2023.e22409

Table 5.

Diagnostic performance of detecting bone metastases in bone scans of previous studies.

Authors Type of CNN Primary tumors n Prv (%) Acc (%) Sen (%) Spe (%) Prc (%) Rec (%)
Papandrianos et al. [13] 4-layer CNN Prostate 778 41.9 91.6 92.7 96.0
Papandrianos et al. [14] 3-layer CNN Breast 408 54.1 92.5 94.0 92.0 93.4 93.8
Pi et al. [15] Inception-V3 Lung (31 %)
Breast (24 %)
Prostate (10 %)
Other (12 %)
Benign (22 %)
15,474 37.5 95.0 93.2 96.1
Hsieh et al. [16] ResNet50V2 Breast (59 %)
H&N (12 %)
Prostate (7 %)
Lung (5 %)
Liver (3 %)
Other (14 %)
37,427 8.1 96.1 59.9 99.3 87.8
Guo et al. [17] 26-layer CNN Lung 945 64.8 83.1 87.0 87.0
Han et al. [18] GLUE 2D-CNN Prostate 9133 32.7 90.0 82.8 93.5
Liu et al. [19] ResNet 34 Prostate
Lung
Breast
Gastrointestinal
621 43.9 88.6 92.6 85.5

Acc, accuracy; CNN, convolutional neural network; GLUE, global–local unified emphasis; H&N, head and neck; Prc, precision, Prv, prevalence; Rec, recall; Sen, sensitivity; Spe, specificity.