Skip to main content
Chinese Journal of Contemporary Pediatrics logoLink to Chinese Journal of Contemporary Pediatrics
. 2023 Dec 15;25(12):1234–1238. [Article in Chinese] doi: 10.7499/j.issn.1008-8830.2308073

川崎病基因多态性的研究进展

Research advances in genetic polymorphisms in Kawasaki disease

DONG Ming-Xing 1,2, WANG Xi-Xia 1, JIAO Fu-Yong 2, ZHANG Wei-Hua 1,3,
Editor: 王 颖
PMCID: PMC10731961  PMID: 38112140

Abstract

川崎病(Kawasaki disease, KD)是一种好发于儿童的全身性血管炎症疾病,是儿童后天性心脏病的主要原因。虽然该病病因尚不清楚,但通过全基因组关联和全基因组连锁研究发现,一些易感基因和染色体区域与KD的发生发展相关。随着高通量DNA测序技术的发展,越来越多与KD相关的基因组信息被发现。了解KD发病机制中涉及的基因可能为该病的诊断和治疗提供新思路。该文通过分析相关文献,总结研究进展,主要讨论目前已证实与KD发生发展密切相关的增强T细胞活化类基因,揭示其与KD发病及冠状动脉损伤的相关性。

Keywords: 川崎病, 基因多态性, 易感性, 冠状动脉病变


川崎病(Kawasaki disease, KD)又称皮肤黏膜淋巴结综合征,是以全身性中、小动脉炎症为主要病理改变的急性热性出疹性疾病,主要表现为发热、双侧非渗出性结膜炎、口唇及口腔黏膜改变、四肢末梢病变、皮疹和颈部淋巴结肿大1。KD好发于 5 岁以下婴幼儿,已成为发达国家小儿后天性心脏病的主要病因,且与成年后的心血管疾病关系密切2。目前治疗KD通常采用高剂量静脉注射免疫球蛋白(intravenous immunoglobulin, IVIG),但10%~20%的KD患者在接受IVIG治疗后仍会出现持续高热或复发。KD引起的冠状动脉损伤(coronary artery lesion, CAL)主要为冠状动脉扩张和冠状动脉瘤(coronary artery aneurysm, CAA),一般来说,20%~25%未经治疗的KD儿童和3%~5% IVIG治疗的KD儿童会发生CAA,其中大约有20%的CAA患儿可能需要有创心脏治疗,CAL主要发生在幼儿中(84%~86%的病例发生在6月龄至5岁的儿童中),且以男性多见(约为女性的1.5~1.8倍)3

虽然KD的临床特征、诊断和治疗已经十分明确,但其发病机制目前尚不清楚4。临床和流行病学证据表明,炎症反应是由普遍存在的感染因素诱导的,KD在特定季节和新型冠状病毒感染大流行中的发生有力地支持了该病的感染触发因素,然而到目前为止,还没有发现与其相关的特定病原体。KD在全世界范围内都有发生,但其发病具有明显的种族及家族倾向性。通过对各个国家和地区的流行病学调查分析研究,KD主要好发于亚裔人群,发病率前三的国家或地区分别是日本、韩国和中国台湾,而且移民到欧美地区的亚裔居民发病率仍高于欧美原住居民5。研究表明,KD存在某些易感性的遗传因素,如同卵双胞胎、父母有KD病史及兄弟姐妹患有KD均会导致发病率增加。全基因组关联分析(genome-wide association study, GWAS)发现多个基因的多态性与KD发生发展密切相关6-7。基因的多态性在决定疾病易感性和治疗结果的个体间差异方面发挥着重要作用。有GWAS研究结果显示,KD共检测到2 923个相关差异表达基因,其中上调基因1 239个,下调基因1 684个8。目前关于KD研究的基因可大致分为T细胞活化增强、B细胞信号失调、转化生长因子β信号改变,以及细胞凋亡减少等几类。本文主要对与T细胞活化增强类相关基因进行综述,大量GWAS研究结果证实,肌醇三磷酸-激酶C(inositol-triphosphate 3-kinase C, ITPKC)、钙释放激活钙调节蛋白1(calcium release-activated calcium modulator 1, ORAI1)、γ干扰素诱导蛋白10(interferon-γ-inducible protein-10, IP10)及微小核糖核酸-181(microRNA-181, miR-181)基因和KD发生发展有着密切联系6-8,本文将主要介绍这些基因的单核苷酸多态性(single nucleotide polymorphism, SNP)与KD易感性及CAL发生之间的关系,总结相关研究,为进一步研究KD相关基因提供思路,同时希望能更好地指导KD的临床诊疗工作。

1. ITPKC基因多态性

ITPKC基因位于染色体19q13.2上,作为钙通道调节剂,通过磷酸化磷酸肌醇3(inositol phosphate 3, IP3)引起Ca2+/活化T细胞核因子(nuclear factor of activated T cells, NFAT)通路的衰减,对T细胞起到负调节作用。IP3是Ca2+/NFAT通路中的一个次级信使,启动钙从内质网储存中释放,引起NFAT核易位,进而引发细胞因子的释放并启动免疫反应,降低T细胞的激活,从而减少白细胞介素(interleukin, IL)-2产生。ITPKC基因突变会导致T细胞活化的异常调节,ITPKC基因表达降低导致IP3升高,钙通道打开,使T细胞过度活跃。NFAT在免疫系统中具有重要作用,与血管稳定性、血管生成和内皮细胞炎症密切相关9。研究表明,血管内皮细胞的损伤会增加NFATc1、NFATc3和炎症因子的水平10ITPKC基因还能够通过Ca2+动员调节核苷酸结合寡聚化结构域样受体蛋白3(NOD-like receptor protein 3, NLRP3)炎性体的激活,NLRP3炎性体是先天免疫系统对有害刺激(如病原体、死细胞和环境刺激物等)作出反应的传感器11。而激活NLRP3炎性体所需的触发因素包括高迁移率族蛋白B1/糖基化终产物受体/组织蛋白酶B信号、K+流出和Ca2+信号。有研究表示NLRP3炎性体的激活与KD患儿IL-1β和IL-18循环蛋白水平升高相关11

多项研究显示,一种带有rs28493229的ITPKC基因变体被证明与KD易感性和CAL形成有显著关联,其中包括中国、日本及印度的患者12-14,且在日本人群中,发现其在IVIG无应答KD患者中表达明显高于IVIG应答KD患者。研究表示,ITPKC基因中rs28493229多态性对KD症状具有抑制作用12。此外,变异的rs7251246 SNP也显示出与CAL形成具有相关性15。另有研究结果显示,ITPKC基因的rs28493229C等位基因与急性期KD的卡介苗疤痕再激活显著相关16

2. ORAI1基因多态性

ORAI1基因位于染色体12q24.31上,编码由内质网钙传感器基质互作分子1(stromal interaction molecule 1, STIM1)激活的膜结合钙通道亚基。ORAI1基因作为钙池操纵性钙内流(store-operated calcium entry, SOCE)机制的一部分,在促进T细胞活性中起重要作用。STIM1会导致ORAI1基因构象改变,使细胞外Ca2+进入细胞质,导致钙调磷酸酶去磷酸化和激活,并将NFAT易位到细胞核中17-19ORAI1基因也可以不依赖于STIM1和SOCE,介导过敏毒素C5a诱导的钙内流和中性粒细胞迁移20。在无功能ORAI1基因小鼠研究中,结果证实了ORAI1基因在T细胞介导的自身免疫中的重要性17。而且ORAI1基因功能性等位基因的纯合缺失会导致染色体隐性遗传免疫缺陷综合征的发生21

Onouchi等22的研究显示,ORAI1基因的rs3741596 SNP与KD易感性具有显著关联,其在日本人群中的发病率是欧洲人群的20倍。且在另一项研究中,rs3741596携带的G等位基因会增加KD患儿并发CAL的概率23。但在对于中国台湾人群研究中,ORAI1基因的2个SNP(rs3741596和rs75603737)均未发现与KD有显著相关性24,这可能与不同种族的基因差异有关。对于ORAI1基因的SNP与KD及其并发症之间的关系仍需进一步研究。

3. IP10基因多态性

IP10基因位于染色体4q21上,可由单核细胞-上皮细胞相互作用诱导产生,也可通过肿瘤坏死因子(tumor necrosis factor, TNF)-α、γ干扰素(interferon-γ, IFN-γ)、病毒RNA等与其G蛋白偶联受体结合产生。IP10基因与其受体结合后,具有强大的淋巴细胞趋化活性,可趋化T细胞、单核细胞和自然杀伤细胞的聚集,促进IL-6、IFN-γ等炎性细胞因子的分泌25IP10基因可通过与CXC趋化因子受体3之间的相互作用产生肌醇磷酸盐,并介导T细胞中的钙动员,从而触发内皮细胞和血管平滑肌细胞的增殖26IP10基因通过刺激冠状动脉平滑肌细胞促进血管钙化的表型产生,该表型受骨形态发生蛋白自分泌刺激及随之产生的Smad同源物1/5(Smad1/5)-Runt相关转录因子2信号激活,且受骨基质相关蛋白(骨桥蛋白、成骨细胞分泌蛋白、碱性磷酸酶)表达调控,这可能与KD进展中的血管钙化存在一定关系27

Ko等28在对中国汉族KD患儿的研究中发现,患儿血浆中的IP10蛋白表达水平显著升高,且经IVIG治疗后,能够恢复至正常水平。在IP10基因的SNP中,rs3921、rs4386624具有功能性并且影响基因表达,rs3921 AA基因型的GA/TA双倍型显著增加了KD易感性和对IVIG耐药的风险,在中国台湾、韩国、伊朗的研究中,rs4386624的AA型SNP可能与患儿IVIG不敏感有关,且与KD易感性相关29-31。研究证实,IP10基因的rs3921的CC基因型及rs4386624的GG基因型与KD患儿的病情严重程度相关,而二者携带的AA基因型可能会使患儿并发CAL的风险增加,且二者之间具有组合效应32。虽然rs4508917 SNP与KD之间存在一定关联,但与KD的易感性是否存在关系仍需要进一步的研究证实33

4. miR-181基因多态性

miRNA是内源性的、长度为21~25个核苷酸的单链非编码RNA,可通过结合靶mRNA的3'非翻译区,诱导mRNA降解和抑制蛋白翻译,以及激活Toll样受体,直接增强核内转录。在KD患者中,上皮-间质转化和细胞凋亡信号通路中存在大量miRNA的失调34。MiR-181家族参与炎症、免疫、细胞增殖和细胞凋亡等多种生理和病理过程35miR-181基因家族的miR-181cmiR-181d基因位于19号染色体上,相隔约100 bp,二者与多种心血管疾病相关36-37。研究发现,miR-181c基因通过靶向Smad7增强Smad2/3信号转导,促进转化生长因子-β诱导的辅助性T细胞17(helper T cell 17, Th17)分化38。Th17细胞分泌的IL-17不仅在黏膜防御某些病原体中起作用,且与多种自身免疫性疾病有关,而Th17细胞及IL-17在KD急性期升高,且在IVIG治疗后下降39miR-181d基因靶向核因子-κB通路,促进促炎细胞因子TNF-α的表达,TNF-α是KD急性期典型升高的多效炎性细胞因子。同时miR-181d基因也与血清外泌体中IL-6升高有关36,IL-6可促进Th17分化,下调调节性T细胞的产生,增加血管内皮生长因子的产生,促进血管生成。而IL-6在KD的急性期上调,可能是不完全KD和IVIG无应答KD的生物标志物。

研究发现miR-181c/d基因的rs8108402 C/TSNP与中国儿童KD易感性风险显著相关40,且与C等位基因相比,T等位基因的表现更加显著,但其与CAL形成及IVIG无应答之间是否存在关联尚不清楚。而在另一项研究中,miR-181a基因rs77418916位点的AA、AT、TT基因型频率及A、T等位基因频率均未显示与KD易感性及CAL发生存在相关性,这可能与其研究样本量较少及民族差异性有关41。虽然研究已经证明miR181基因与KD存在一定关系,但目前相关SNP报道较少,仍待更加深入的研究。

5. 总结与展望

综上所述,KD作为儿童常见的免疫炎症性疾病,常伴有CAL,严重的甚至会发生CAA破裂、心肌梗死及猝死等并发症,严重影响患儿生长发育,给患儿及其家庭带来沉重的心理及经济负担。因此对于易感人群及并发症的监测十分重要,基因检测可以在其中扮演重要的角色。

虽然目前关于KD易感性及CAL产生的基因研究较多,但大部分研究都是样本量少的单一中心研究,且研究内容不够深入,研究多为单个基因,关于合并基因与KD的相关研究非常少。通过对KD易感基因及CAL发生发展相关基因的研究,可以帮助阐明KD的发病机制,指导临床筛选出相关基因,协助早期发现KD易感及高危人群,并帮助临床医生在选择特异性药物进行个体化治疗等方面提供新的思路。

利益冲突声明

所有作者声明无利益冲突。

参 考 文 献

  • 1. Ae R, Makino N, Kosami K, et al. Epidemiology, treatments, and cardiac complications in patients with Kawasaki disease: the nationwide survey in Japan, 2017-2018[J]. J Pediatr, 2020, 225: 23-29.e2. DOI: 10.1016/j.jpeds.2020.05.034. [DOI] [PubMed] [Google Scholar]
  • 2. McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. DOI: 10.1161/CIR.0000000000000484. [DOI] [PubMed] [Google Scholar]
  • 3. Yim D, Curtis N, Cheung M, et al. Update on Kawasaki disease: epidemiology, aetiology and pathogenesis[J]. J Paediatr Child Health, 2013, 49(9): 704-708. DOI: 10.1111/jpc.12172. [DOI] [PubMed] [Google Scholar]
  • 4. Chen Y, Ding YY, Ren Y, et al. Identification of differentially expressed microRNAs in acute Kawasaki disease[J]. Mol Med Rep, 2018, 17(1): 932-938. DOI: 10.3892/mmr.2017.8016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Kim GB. Reality of Kawasaki disease epidemiology[J]. Korean J Pediatr, 2019, 62(8): 292-296. DOI: 10.3345/kjp.2019.00157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Nakamura Y. Kawasaki disease: epidemiology and the lessons from it[J]. Int J Rheum Dis, 2018, 21(1): 16-19. DOI: 10.1111/1756-185X.13211. [DOI] [PubMed] [Google Scholar]
  • 7. Liu Y, Fu L, Pi L, et al. An angiotensinogen gene polymorphism (rs5050) is associated with the risk of coronary artery aneurysm in Southern Chinese children with Kawasaki disease[J]. Dis Markers, 2019, 2019: 2849695. DOI: 10.1155/2019/2849695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Li KL, Jiao Y, Liang JJ, et al. Screening key differentially expressed genes in Kawasaki disease via integrated analysis[J]. Iran J Pediatr, 2021, 31(6): e114730. DOI: 10.5812/ijp.114730. [DOI] [Google Scholar]
  • 9. Bird L. NFAT: platelet stickiness regulator[J]. Nat Rev Immunol, 2022, 22(2): 74-75. DOI: 10.1038/s41577-022-00677-5. [DOI] [PubMed] [Google Scholar]
  • 10. Onouchi Y, Suzuki Y, Suzuki H, et al. ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease[J]. Pharmacogenomics J, 2013, 13(1): 52-59. DOI: 10.1038/tpj.2011.45. [DOI] [PubMed] [Google Scholar]
  • 11. Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. DOI: 10.3390/ijms20133328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Kim KY, Bae YS, Ji W, et al. ITPKC and SLC11A1 gene polymorphisms and gene-gene interactions in Korean patients with Kawasaki disease[J]. Yonsei Med J, 2018, 59(1): 119-127. DOI: 10.3349/ymj.2018.59.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Singh A, Rawat A, Kaur A, et al. Association of SNP (rs1042579) in thrombomodulin gene and plasma thrombomodulin level in north Indian children with Kawasaki disease[J]. Mol Biol Rep, 2022, 49(8): 7399-7407. DOI: 10.1007/s11033-022-07533-8. [DOI] [PubMed] [Google Scholar]
  • 14. Bhattarai D, Kumrah R, Kaur A, et al. Association of ITPKC gene polymorphisms rs28493229 and rs2290692 in North Indian children with Kawasaki disease[J]. Pediatr Res, 2022, 92(4): 1090-1098. DOI: 10.1038/s41390-021-01830-x. [DOI] [PubMed] [Google Scholar]
  • 15. Kuo HC, Hsu YW, Lo MH, et al. Single-nucleotide polymorphism rs7251246 in ITPKC is associated with susceptibility and coronary artery lesions in Kawasaki disease[J]. PLoS One, 2014, 9(3): e91118. DOI: 10.1371/journal.pone.0091118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Lin MT, Wang JK, Yeh JI, et al. Clinical implication of the C allele of the ITPKC gene SNP rs28493229 in Kawasaki disease: association with disease susceptibility and BCG scar reactivation[J]. Pediatr Infect Dis J, 2011, 30(2): 148-152. DOI: 10.1097/INF.0b013e3181f43a4e. [DOI] [PubMed] [Google Scholar]
  • 17. McCarl CA, Khalil S, Ma J, et al. Store-operated Ca2+ entry through ORAI1 is critical for T cell-mediated autoimmunity and allograft rejection[J]. J Immunol, 2010, 185(10): 5845-5858. DOI: 10.4049/jimmunol.1001796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Sogkas G, Vögtle T, Rau E, et al. Orai1 controls C5a-induced neutrophil recruitment in inflammation[J]. Eur J Immunol, 2015, 45(7): 2143-2153. DOI: 10.1002/eji.201445337. [DOI] [PubMed] [Google Scholar]
  • 19. Shawer H, Norman K, Cheng CW, et al. ORAI1 Ca2+ channel as a therapeutic target in pathological vascular remodelling[J]. Front Cell Dev Biol, 2021, 9: 653812. DOI: 10.3389/fcell.2021.653812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Martínez-Martínez E, Sánchez-Vázquez VH, León-Aparicio D, et al. PKC-mediated Orai1 channel phosphorylation modulates Ca2+ signaling in HeLa cells[J]. Cells, 2022, 11(13): 2037. DOI: 10.3390/cells11132037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Feske S, Gwack Y, Prakriya M, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function[J]. Nature, 2006, 441(7090): 179-185. DOI: 10.1038/nature04702. [DOI] [PubMed] [Google Scholar]
  • 22. Onouchi Y, Fukazawa R, Yamamura K, et al. Variations in ORAI1 gene associated with Kawasaki disease[J]. PLoS One, 2016, 11(1): e0145486. DOI: 10.1371/journal.pone.0145486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. 巴爽, 张宏艳. ORAI1基因rs3741596单核苷酸多态性与川崎病的关系[J]. 天津医药, 2018, 46(11): 1181-1185. DOI: 10.11958/20180803. 29912096 [DOI] [Google Scholar]
  • 24. Chang WC, Lee CH, Hirota T, et al. ORAI1 genetic polymorphisms associated with the susceptibility of atopic dermatitis in Japanese and Taiwanese populations[J]. PLoS One, 2012, 7(1): e29387. DOI: 10.1371/journal.pone.0029387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Coperchini F, Croce L, Marinò M, et al. Role of chemokine receptors in thyroid cancer and immunotherapy[J]. Endocr Relat Cancer, 2019, 26(8): R465-R478. DOI: 10.1530/ERC-19-0163. [DOI] [PubMed] [Google Scholar]
  • 26. Van Raemdonck K, Van den Steen PE, Liekens S, et al. CXCR3 ligands in disease and therapy[J]. Cytokine Growth Factor Rev, 2015, 26(3): 311-327. DOI: 10.1016/j.cytogfr.2014.11.009. [DOI] [PubMed] [Google Scholar]
  • 27. Chang SF, Liu SF, Chen CN, et al. Serum IP-10 and IL-17 from Kawasaki disease patients induce calcification-related genes and proteins in human coronary artery smooth muscle cells in vitro [J]. Cell Biosci, 2020, 10: 36. DOI: 10.1186/s13578-020-00400-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Ko TM, Kuo HC, Chang JS, et al. CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease[J]. Circ Res, 2015, 116(5): 876-883. DOI: 10.1161/CIRCRESAHA.116.305834. [DOI] [PubMed] [Google Scholar]
  • 29. Talaat RM, Elsharnoby S, Abdelkhalek MS, et al. The impact of interferon-γ (IFN-γ) and IFN-γ-inducible protein 10 (IP-10) genes' polymorphism on risk of hepatitis C virus-related liver cirrhosis[J]. Immunol Invest, 2022, 51(3): 688-704. DOI: 10.1080/08820139.2020.1869251. [DOI] [PubMed] [Google Scholar]
  • 30. Lev S, Gottesman T, Sahaf Levin G, et al. Observational cohort study of IP-10's potential as a biomarker to aid in inflammation regulation within a clinical decision support protocol for patients with severe COVID-19[J]. PLoS One, 2021, 16(1): e0245296. DOI: 10.1371/journal.pone.0245296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Sugiyama M, Kinoshita N, Ide S, et al. Serum CCL17 level becomes a predictive marker to distinguish between mild/moderate and severe/critical disease in patients with COVID-19[J]. Gene, 2021, 766: 145145. DOI: 10.1016/j.gene.2020.145145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Hsu YW, Lu HF, Chou WH, et al. Functional correlations between CXCL10/IP10 gene polymorphisms and risk of Kawasaki disease[J]. Pediatr Allergy Immunol, 2021, 32(2): 363-370. DOI: 10.1111/pai.13381. [DOI] [PubMed] [Google Scholar]
  • 33. 张芳霞, 龚育红, 王立琼. IP10基因rs3921及rs4386624位点多态性与川崎病的关系[J]. 中国妇幼健康研究, 2022, 33(11): 18-23. DOI: 10.3969/j.issn.1673-5293.2022.11.004. [DOI] [Google Scholar]
  • 34. Weng KP, Cheng CF, Chien KJ, et al. Identifying circulating microRNA in Kawasaki disease by next-generation sequencing approach[J]. Curr Issues Mol Biol, 2021, 43(2): 485-500. DOI: 10.3390/cimb43020037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Indrieri A, Carrella S, Carotenuto P, et al. The pervasive role of the miR-181 family in development, neurodegeneration, and cancer[J]. Int J Mol Sci, 2020, 21(6): 2092. DOI: 10.3390/ijms21062092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Fan KL, Li MF, Cui F, et al. Altered exosomal miR-181d and miR-30a related to the pathogenesis of CVB3 induced myocarditis by targeting SOCS3[J]. Eur Rev Med Pharmacol Sci, 2019, 23(5): 2208-2215. DOI: 10.26355/eurrev_201903_17268. [DOI] [PubMed] [Google Scholar]
  • 37. Su XW, Lu G, Leung CK, et al. miR-181d regulates human dendritic cell maturation through NF-κB pathway[J]. Cell Prolif, 2017, 50(5): e12358. DOI: 10.1111/cpr.12358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Zhang Z, Xue Z, Liu Y, et al. MicroRNA-181c promotes Th17 cell differentiation and mediates experimental autoimmune encephalomyelitis[J]. Brain Behav Immun, 2018, 70: 305-314. DOI: 10.1016/j.bbi.2018.03.011. [DOI] [PubMed] [Google Scholar]
  • 39. Rasouli M, Heidari B, Kalani M. Downregulation of Th17 cells and the related cytokines with treatment in Kawasaki disease[J]. Immunol Lett, 2014, 162(1 Pt A): 269-275. DOI: 10.1016/j.imlet.2014.09.017. [DOI] [PubMed] [Google Scholar]
  • 40. Yao M, He Q, Yang M, et al. Association of miR-181c/d gene locus rs8108402 C/T polymorphism with susceptibility to Kawasaki disease in Chinese children[J]. Front Pediatr, 2022, 10: 899779. DOI: 10.3389/fped.2022.899779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. 姚美清, 余梦, 吴吉平, 等. miR-181a基因rs77418916位点多态性与川崎病的关联性研究[J]. 湖南师范大学学报(医学版), 2021, 18(2): 13-15. DOI: 10.3969/j.issn.1673-016X.2021.02.004. [DOI] [Google Scholar]

Articles from Chinese Journal of Contemporary Pediatrics are provided here courtesy of Xiangya Hospital, Central South University

RESOURCES