Skip to main content
Chinese Journal of Contemporary Pediatrics logoLink to Chinese Journal of Contemporary Pediatrics
. 2023 Dec 15;25(12):1259–1264. [Article in Chinese] doi: 10.7499/j.issn.1008-8830.2307109

外周血C3aR1及NETs表达水平对脓毒症性凝血病的预测价值

Value of the expression levels of complement-3a receptor 1 and neutrophil extracellular traps in predicting sepsis-induced coagulopathy

曹 锐 1,2, 刘 开勋 1, 胡 丹 1, 齐 共健 1,
Editor: 王 颖
PMCID: PMC10731964  PMID: 38112144

Abstract

目的

研究补体C3a受体1(complement-3a receptor1, C3aR1)及中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs)对脓毒症性凝血病(sepsis-induced coagulopathy, SIC)的临床预测价值。

方法

前瞻性纳入2022年6月—2023年6月于徐州医科大学附属徐州儿童医院就诊的脓毒症患儿78例为研究对象,根据是否发生SIC分为SIC组(36例)和非SIC组(42例)。比较两组临床资料、C3aR1和NETs水平,分析SIC发生的相关因素。应用受试者操作特征曲线(receiver operating characteristic curve, ROC曲线)评估C3aR1及NETs对SIC的预测效能。

结果

SIC组C反应蛋白、白细胞介素(interleukin, IL)-6、IL-10、C3aR1及NETs水平高于非SIC组(P<0.05)。多因素logistic回归分析显示,C3aR1、NETs及IL-6升高与SIC发生密切相关(P<0.05)。ROC曲线分析显示,C3aR1联合NETs预测SIC的曲线下面积为0.913(P<0.05),高于C3aR1、IL-6的曲线下面积(P<0.05),与NETs的曲线下面积比较差异无统计学意义(P>0.05)。

结论

SIC患儿外周血中C3aR1及NETs表达水平显著升高,二者表达水平对预测SIC发生具有较高的临床价值。

Keywords: 脓毒症, 脓毒症性凝血病, 补体C3a受体1, 中性粒细胞胞外诱捕网, 儿童


脓毒症是宿主对感染的反应失调引起的危及生命的器官功能障碍,凝血功能障碍是其常见并发症,合并凝血功能障碍的脓毒症患儿病死率明显增高1-2。国际血栓和止血学会(International Society on Thrombosis and Haemostasis, ISTH)于2017年提出了脓毒症性凝血病(sepsis-induced coagulopathy, SIC)的定义及诊断标准,为临床医师及时识别SIC提供重要依据3。SIC是一种复杂性疾病,已有的预测指标普遍存在相对滞后及缺乏特异性等不足,探索能够早期预测脓毒症患儿发生SIC的生物标志物,具有十分重要的临床价值。脓毒症患者中凝血功能紊乱与其过激的免疫反应密切相关。研究显示,脓毒症所致弥散性血管内凝血(disseminated intravascular coagulation, DIC)患者存在可溶性C5b-C9水平增高,且补体的激活程度与DIC的预后相关4。补体C3a受体1(complement-3a receptor 1, C3aR1)为导致严重脓毒症的枢纽基因,参与内皮损伤和炎症风暴发生,目前C3aR1与凝血的相关研究主要集中于冠状动脉疾病及血栓性微血管病5-7。中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs)作为先天免疫应答的一部分,过度堆积可导致组织损伤及炎性血栓形成,脓毒症患者NETs水平对预测DIC发生具有一定价值8。然而,当脓毒症相关凝血功能障碍进展为DIC后,多处于不可逆阶段,错失治疗干预的最佳时机。因此,本研究以免疫血栓形成机制为切入点,探讨患儿外周血C3aR1和NETs水平对SIC的预测价值,以便早期识别高风险患儿,采取相应的干预措施,进而改善疾病预后。

1. 资料与方法

1.1. 研究对象

前瞻性选取徐州医科大学附属徐州儿童医院2022年6月—2023年6月收治的78例脓毒症患儿为研究对象。纳入标准:(1)年龄6个月至14岁;(2)符合2015年中华医学会发布的《儿童脓毒性休克(感染性休克)诊治专家共识(2015版)》中儿童脓毒症的诊断标准9。排除标准:(1)既往存在血液系统疾病、免疫系统疾病或恶性肿瘤病史;(2)入院前6个月内应用糖皮质激素、免疫抑制剂等;(3)合并其他引起血小板(platelet, PLT)减少的疾病,或服用导致PLT减少的药物;(4)入院后24 h内死亡或住院期间放弃治疗;(5)患儿监护人要求退出。本研究经徐州医科大学附属徐州儿童医院伦理委员会评审通过(2023-05-73-H73),经患儿监护人书面知情同意。

1.2. 分组

依照2017年ISTH发布的SIC诊断标准3,即(1)PLT计数为(100~150)×109/L记1分,<100×109/L记2分;(2)1.2<国际标准化比值(international normalized ratio, INR)≤1.4记1分,INR>1.4记2分;(3)儿童序贯器官衰竭评分(pediatric Sequential Organ Failure Assessment, pSOFA)≥2记2分,pSOFA=1记1分。以上3项评分累计≥4分诊断为SIC。将78例脓毒症患儿分为SIC组(36例)与非SIC组(42例)。

1.3. 资料收集

收集入组患儿年龄、性别、原发感染部位、入院时体温、入院时心率、pSOFA、PLT计数、INR、纤维蛋白原(fibrinogen, FIB)、白细胞介素(interleukin, IL)水平、C反应蛋白(C-reactive protein, CRP)等数据。

1.4. C3aR1及NETs表达水平检测

入院2 h内采集外周静脉血2 mL于EDTA抗凝管中,离心10 min(3 500 r/min),提取上清液,以-80℃低温冻存。采用酶联免疫吸附法检测血浆标本中C3aR1及NETs表达水平,室温平衡20 min后,向酶标板条内依次加入样本、标准品、生物素化抗体,覆膜以37℃孵育1 h,移去覆膜洗板3次,加酶结合物工作液,以37℃孵育30 min,洗板5次,加底物,以37℃孵育15 min,取出酶标板加终止液,以酶标仪在450 nm波长下测定吸光度,计算样本浓度。试剂盒由上海江莱生物科技有限公司提供,该试剂盒C3aR1测定范围为0.15~10 ng/mL,NETs测定范围为0.625~40 ng/mL。

1.5. 统计学分析

采用SPSS 25.0统计学软件进行数据分析。计量资料以中位数(四分位数间距)[MQ 1Q 3)]表示,组间比较采用Mann-Whitney U检验。计数资料采用例数和百分率(%)描述,组间比较采用卡方检验。采用多因素logistic回归分析筛选与SIC发生相关的危险因素。绘制受试者操作特征曲线(receiver operating characteristic curve, ROC曲线)分析C3aR1、NETs对SIC的预测价值,采用MedCalc 20.1.0软件对各指标曲线下面积(area under the cure, AUC)进行Z检验。P<0.05为差异有统计学意义。

2. 结果

2.1. 两组基线资料比较

两组患儿年龄、性别、原发感染部位、入院时体温、入院时心率、pSOFA评分比较差异均无统计学意义(P>0.05),见表1

表1.

两组基线资料比较

项目 非SIC组 (n=42) SIC组 (n=36) Z/ χ2 P
年龄 [M(Q 1, Q 3), 岁] 4.42(2.98, 6.92) 5.63(3.08, 10.09) -1.088 0.277
性别 (男/女, 例) 24/18 17/19 0.765 0.382
原发感染部位 [例(%)]
呼吸道感染 24(57) 18(50) 0.398 0.528
中枢神经系统感染 5(12) 7(19) 0.847 0.358
腹部感染 2(5) 5(14) 1.977 0.160
皮肤软组织感染 4(10) 1(3) 1.470 0.225
其他 7(17) 5(14) 0.115 0.735
入院时体温 [M(Q 1, Q 3), ℃] 39.5(39.0, 39.7) 39.3(38.8, 39.5) -1.759 0.079
入院时心率 [M(Q 1, Q 3), 次/min] 160.5(150.0, 181.0) 161.5(153.5, 171.0) -0.060 0.925
pSOFA [M(Q 1, Q 3), 分] 6(3, 8) 6(4, 9) -0.636 0.525

注:[SIC]脓毒症性凝血病;[pSOFA]儿童序贯器官衰竭评估。

2.2. 两组实验室数据比较

SIC组患儿INR、CRP、IL-6、IL-10、C3aR1及NETs水平高于非SIC组,PLT计数低于非SIC组(P<0.05)。两组患儿FIB、IL-2及IL-4水平比较差异无统计学意义(P>0.05)。见表2

表2.

两组实验室数据比较 [MQ 1Q 3)]

项目 非SIC组 (n=42) SIC组 (n=36) Z P
INR 1.08(1.01, 1.16) 1.45(1.26, 1.73) -5.900 <0.001
PLT计数 (×109/L) 246.50(189.50, 337.25) 96.00(63.13, 174.00) -5.057 <0.001
FIB (g/L) 3.34(2.51, 4.53) 2.64(1.69, 3.54) -1.869 0.062
CRP (mg/L) 20.86(8.69, 44.43) 60.15(20.72, 145.89) -2.897 0.004
IL-2 (pg/mL) 2.60(1.68, 4.68) 3.75(2.33, 6.15) -1.599 0.110
IL-4 (pg/mL) 3.90(2.23, 5.73) 4.8(3.25, 6.93) -1.895 0.058
IL-6 (pg/mL) 21.00(9.58, 58.80) 315.90(21.78, 2 847.35) -3.939 <0.001
IL-10 (pg/mL) 10.90(6.15, 24.03) 28.10(9.73, 133.15) -2.922 0.003
C3aR1 (ng/mL) 2.67(1.44, 3.99) 6.99(3.97, 8.11) -4.235 <0.001
NETs (ng/mL) 5.73(4.15, 7.96) 18.03(10.11, 31.13) -5.603 <0.001

注:[SIC]脓毒症性凝血病;[INR]国际标准化比值;[PLT]血小板;[FIB]纤维蛋白原;[CRP]C反应蛋白;[IL]白细胞介素;[C3aR1]补体C3a受体1;[NETs]中性粒细胞胞外诱捕网。

2.3. 影响SIC发生的多因素logistic回归分析

纳入CRP、IL-6、IL-10、C3aR1及NETs进行多因素logistic回归分析,结果显示C3aR1、NETs及IL-6升高与SIC发生密切相关(P<0.05),见表3

表3.

影响SIC发生的多因素logistic分析

变量 赋值 B SE Wald χ2 P OR 95%CI
CRP 连续型变量 0.012 0.007 3.325 0.068 1.012 0.999~1.025
IL-6 连续型变量 0.001 0.001 4.204 0.040 1.001 1.000~1.002
IL-10 连续型变量 0.008 0.010 0.658 0.417 1.008 0.988~1.029
C3aR1 连续型变量 0.554 0.181 9.429 0.002 1.741 1.222~2.480
NETs 连续型变量 0.201 0.054 13.626 <0.001 1.222 1.099~1.360

注:[SIC]脓毒症性凝血病;[CRP]C反应蛋白;[IL]白细胞介素;[C3aR1]补体C3a受体1;[NETs]中性粒细胞胞外诱捕网。

2.4. ROC曲线分析

C3aR1、NETs及IL-6预测SIC发生的AUC值分别为0.779、0.870和0.760(P<0.05)。当C3aR1取最佳截断值4.866 ng/mL时,灵敏度和特异度分别为72.2%和81.0%;当NETs取最佳截断值8.650 ng/mL时,灵敏度和特异度均为83.3%;当IL-6取最佳截断值57.800 pg/mL时,灵敏度和特异度分别为72.2%和76.2%。C3aR1联合NETs预测SIC的AUC为0.913,灵敏度为83.3%,特异度为95.2%。C3aR1联合NETs预测SIC的AUC高于C3aR1、IL-6的AUC(分别Z=2.039,P=0.041;Z=2.791,P=0.006),与NETs AUC比较差异无统计学意义(Z=1.733,P=0.083)。见表4

表4.

C3aR1、NETs及IL-6预测SIC的ROC曲线分析

变量 AUC 约登指数 最佳截断值 灵敏度 特异度 P
C3aR1 0.779a 0.532 4.866 0.722 0.810 <0.001
NETs 0.870 0.666 8.650 0.833 0.833 <0.001
IL-6 0.760a 0.484 57.800 0.722 0.762 <0.001
C3aR1联合NETs 0.913 0.785 - 0.833 0.952 <0.001

注:[SIC]脓毒症性凝血病;[C3aR1]补体C3a受体1;[NETs]中性粒细胞胞外诱捕网;[IL-6]白细胞介素-6。a示与C3aR1联合NETs比较,P<0.05。

3. 讨论

SIC是脓毒症患者的常见并发症,部分患儿可迅速进展为DIC,最终导致多脏器衰竭甚至死亡10。SIC的发病机制复杂,凝血系统的紊乱与炎症反应、补体系统的异常激活密切相关11。早期凝血紊乱具有隐匿性,目前缺乏早期预测凝血障碍发生的生物学指标12。因此,寻找早期预测SIC发生的生物学指标具有重要临床价值。

发生脓毒症时,过敏毒素(C3a和C5a)大量释放会导致炎症风暴及内皮损伤,与凝血功能障碍密切相关13-14。在炎症反应过程中,C3aR1与补体C3a特异性结合,通过PLC-PKC信号通路引起细胞内钙流的改变,发挥趋化效应,诱导端粒酶释放及氧自由基的产生,介导血管内皮细胞损伤,促进血栓形成15-16,推测C3aR1的高表达与SIC的发生具有一定关系。NETs是中性粒细胞接受刺激后形成释放的胞外结构17,Varjú等18证实,NETs及其组分可直接参与血凝块的形成并改变血凝块中纤维蛋白的结构,降低血凝块对组织型纤溶酶原激活物的敏感性,发挥抑制纤溶作用。Pieterse等19发现,脓毒症中NETs过度产生可能导致细胞毒性而损伤内皮细胞。由此推测NETs在SIC的发生发展中起重要作用。本研究受试者为儿童,故采用pSOFA量表,评价脓毒症患儿的疾病严重程度和器官损伤情况20

本研究中,SIC组C3aR1和NETs水平高于非SIC组,多因素logistic回归分析显示C3aR1、NETs与SIC的发生密切相关。Propson等21研究证实,内皮细胞中激活的C3a-C3aR1信号转导可以引起淋巴细胞浸润,触发血管细胞黏附分子1的分泌增加,由此分析C3aR1的高表达可能通过促进血管功能的炎症转变,导致SIC的发生。Sauter等6研究表明在冠状动脉疾病中,C3aR1表达与血栓中活化PLT表面糖蛋白IIb/IIIa受体的共表达呈强正相关,C3aR1通过调节Ras相关蛋白1b的激活促进血栓形成,脓毒症过程中同样存在过激的炎症反应与内皮损伤,提示C3aR1可能通过诱导PLT过度活化、激活与血栓形成相关的细胞信号通路,增加SIC发生的风险。Abrams等8研究发现,DIC患者血浆诱导的NETs形成显著高于非DIC患者,本研究结果与之相符。Alsabani等22通过动物实验显示抑制CXC趋化因子受体1/2减少NETs的生成可以降低脓毒症小鼠血管功能障碍的发生。由此可见NETs过度释放可导致血管内皮损伤,促进PLT聚集和免疫血栓形成,增加SIC发生的风险。

进一步绘制ROC曲线评估C3aR1、NETs及IL-6对SIC的预测价值,结果显示C3aR1联合NETs预测SIC的价值高于C3aR1与IL-6单独检测,与NETs单独预测价值相当。鲁海艳等23发现IL-6在预测脓毒症并发凝血功能障碍中的AUC为0.716,其特异度为87.5%,本研究结果与之相似。俞秋兴等24研究显示,NETs相关标志物预测脓毒症相关凝血功能障碍的AUC可达0.97,本研究结果与之相符,均提示NETs在预测脓毒症并发的凝血性疾病中的重要价值。本研究采用的是SIC诊断标准,Yamakawa等25研究表明SIC相较脓毒症相关凝血功能障碍更有益于指导脓毒症早期抗凝治疗。

综上所述,SIC中C3aR1及NETs表达水平显著增高,检测C3aR1及NETs水平对预测SIC发生具有重要临床价值。本研究作为一项单中心前瞻性研究,样本量数量偏少,有待进一步扩大样本量完善研究。

基金资助

徐州市科技计划项目(KC21180)。

利益冲突声明

所有作者声明不存在利益冲突关系。

参 考 文 献

  • 1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI: 10.1001/jama.2016.0287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Iba T, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation[J]. Anesthesiology, 2020, 132(5): 1238-1245. DOI: 10.1097/ALN.0000000000003122. [DOI] [PubMed] [Google Scholar]
  • 3. Iba T, Nisio MD, Levy JH, et al. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: a retrospective analysis of a nationwide survey[J]. BMJ Open, 2017, 7(9): e017046. DOI: 10.1136/bmjopen-2017-017046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Abe T, Kubo K, Izumoto S, et al. Complement activation in human sepsis is related to sepsis-induced disseminated intravascular coagulation[J]. Shock, 2020, 54(2): 198-204. DOI: 10.1097/SHK.0000000000001504. [DOI] [PubMed] [Google Scholar]
  • 5. Xie K, Kong S, Li F, et al. Bioinformatics-based study to investigate potential differentially expressed genes and miRNAs in pediatric sepsis[J]. Med Sci Monit, 2020, 26: e923881. DOI: 10.12659/MSM.923881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Sauter RJ, Sauter M, Reis ES, et al. Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis[J]. Circulation, 2018, 138(16): 1720-1735. DOI: 10.1161/CIRCULATIONAHA.118.034600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Schmidt CQ, Schrezenmeier H, Kavanagh D. Complement and the prothrombotic state[J]. Blood, 2022, 139(13): 1954-1972. DOI: 10.1182/blood.2020007206. [DOI] [PubMed] [Google Scholar]
  • 8. Abrams ST, Morton B, Alhamdi Y, et al. A novel assay for neutrophil extracellular trap formation independently predicts disseminated intravascular coagulation and mortality in critically ill patients[J]. Am J Respir Crit Care Med, 2019, 200(7): 869-880. DOI: 10.1164/rccm.201811-2111OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. 中华医学会儿科学分会急救学组, 中华医学会急诊医学分会儿科学组, 中国医师协会儿童重症医师分会 . 儿童脓毒性休克(感染性休克)诊治专家共识(2015版)[J]. 中华儿科杂志, 2015, 53(8): 576-580. DOI: 10.3760/cma.j.issn.0578-1310.2015.08.007. 26717653 [DOI] [Google Scholar]
  • 10. Schmoch T, Möhnle P, Weigand MA, et al. The prevalence of sepsis-induced coagulopathy in patients with sepsis: a secondary analysis of two German multicenter randomized controlled trials[J]. Ann Intensive Care, 2023, 13(1): 3. DOI: 10.1186/s13613-022-01093-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship[J]. Cell Mol Immunol, 2019, 16(1): 19-27. DOI: 10.1038/s41423-018-0024-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Hayakawa M, Yamakawa K, Saito S, et al. Nationwide registry of sepsis patients in Japan focused on disseminated intravascular coagulation 2011-2013[J]. Sci Data, 2018, 5: 180243. DOI: 10.1038/sdata.2018.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis[J]. Immunity, 2021, 54(11): 2450-2464. DOI: 10.1016/j.immuni.2021.10.012. [DOI] [PubMed] [Google Scholar]
  • 14. van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets[J]. Nat Rev Immunol, 2017, 17(7): 407-420. DOI: 10.1038/nri.2017.36. [DOI] [PubMed] [Google Scholar]
  • 15. Mollnes TE, Huber-Lang M. Complement in sepsis-when science meets clinics[J]. FEBS Lett, 2020, 594(16): 2621-2632. DOI: 10.1002/1873-3468.13881. [DOI] [PubMed] [Google Scholar]
  • 16. Wang Y, Liu W, Xu Y, et al. Revealing the signaling of complement receptors C3aR and C5aR1 by anaphylatoxins[J]. Nat Chem Biol, 2023, 19(11): 1351-1360. DOI: 10.1038/s41589-023-01339-w. [DOI] [PubMed] [Google Scholar]
  • 17. Thiam HR, Wong SL, Wagner DD, et al. Cellular mechanisms of NETosis[J]. Annu Rev Cell Dev Biol, 2020, 36: 191-218. DOI: 10.1146/annurev-cellbio-020520-111016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Varjú I, Longstaff C, Szabó L, et al. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment[J]. Thromb Haemost, 2015, 113(6): 1289-1298. DOI: 10.1160/TH14-08-0669. [DOI] [PubMed] [Google Scholar]
  • 19. Pieterse E, Rother N, Garsen M, et al. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition[J]. Arterioscler Thromb Vasc Biol, 2017, 37(7): 1371-1379. DOI: 10.1161/ATVBAHA.117.309002. [DOI] [PubMed] [Google Scholar]
  • 20. 周利兵, 陈娇, 杜晓晨, 等. 探讨3种评分系统对儿童严重脓毒症预后的评估价值[J]. 中国当代儿科杂志, 2019, 21(9): 898-903. DOI: 10.7499/j.issn.1008-8830.2019.09.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Propson NE, Roy ER, Litvinchuk A, et al. Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging[J]. J Clin Invest, 2021, 131(1): 140966. DOI: 10.1172/JCI140966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Alsabani M, Abrams ST, Cheng Z, et al. Reduction of NETosis by targeting CXCR1/2 reduces thrombosis, lung injury, and mortality in experimental human and murine sepsis[J]. Br J Anaesth, 2022, 128(2): 283-293. DOI: 10.1016/j.bja.2021.10.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. 鲁海艳, 张高峰, 方长太, 等. 血清sTM、IL-6、PCT、E-选择素对脓毒症患者并发凝血功能异常的预测价值[J]. 山东医药, 2020, 60(17): 64-66. DOI: 10.3969/j.issn.1002-266X.2020.17.018. [DOI] [Google Scholar]
  • 24. 俞秋兴, 张勇, 杜鸿, 等. 脓毒症患者中性粒细胞胞外诱捕网的定量研究[J]. 中华实验外科杂志, 2021, 38(11): 2216-2218. DOI: 10.3760/cma.j.cn421213-20210331-00273. [DOI] [Google Scholar]
  • 25. Yamakawa K, Yoshimura J, Ito T, et al. External validation of the two newly proposed criteria for assessing coagulopathy in sepsis[J]. Thromb Haemost, 2019, 119(2): 203-212. DOI: 10.1055/s-0038-1676610. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Contemporary Pediatrics are provided here courtesy of Xiangya Hospital, Central South University

RESOURCES