Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1994 Dec;57(12):1479–1483. doi: 10.1136/jnnp.57.12.1479

Cerebral glucose metabolism in neurofibromatosis type 1 assessed with [18F]-2-fluoro-2-deoxy-D-glucose and PET.

P Balestri 1, G Lucignani 1, A Fois 1, L Magliani 1, L Calistri 1, C Grana 1, R M Di Bartolo 1, D Perani 1, F Fazio 1
PMCID: PMC1073228  PMID: 7798976

Abstract

Cerebral PET with [18F]-2-fluoro-2-deoxy-D-glucose has been performed in four patients with neurofibromatosis type 1 (NF1) to assess the relation between cerebral metabolic activity, MRI, and the presence of neurological symptoms, including seizures, as well as mental and language retardation. Widespread hypometabolism occurred in three of the patients. The lesions on MRI, which were localised in the subcortical white matter and grey structures, had normal rates of glucose metabolism. This finding suggests that the abnormalities seen on MRI are not due to defective blood supply, localised oedema, or grey matter heterotopic foci as previously hypothesised. The presence of the hypometabolic areas seems to be inconsistently related to the occurrence of seizures and is not proportional to the degree of mental impairment. This study provides evidence of a widespread cerebral hypometabolism that is not related to the presence of MRI abnormalities; conversely normal metabolism was present in the areas with an abnormal MRI signal.

Full text

PDF
1479

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairamian D., Di Chiro G., Theodore W. H., Holmes M. D., Dorwart R. H., Larson S. M. MR imaging and positron emission tomography of cortical heterotopia. J Comput Assist Tomogr. 1985 Nov-Dec;9(6):1137–1139. doi: 10.1097/00004728-198511000-00031. [DOI] [PubMed] [Google Scholar]
  2. Balestri P., Calistri L., Vivarelli R., Bartalini G., Mancini L., Berardi A., Fois A. Central nervous system imaging in reevaluation of patients with neurofibromatosis type 1. Childs Nerv Syst. 1993 Dec;9(8):448–451. doi: 10.1007/BF00393546. [DOI] [PubMed] [Google Scholar]
  3. Bognanno J. R., Edwards M. K., Lee T. A., Dunn D. W., Roos K. L., Klatte E. C. Cranial MR imaging in neurofibromatosis. AJR Am J Roentgenol. 1988 Aug;151(2):381–388. doi: 10.2214/ajr.151.2.381. [DOI] [PubMed] [Google Scholar]
  4. Chugani H. T., Phelps M. E., Mazziotta J. C. Positron emission tomography study of human brain functional development. Ann Neurol. 1987 Oct;22(4):487–497. doi: 10.1002/ana.410220408. [DOI] [PubMed] [Google Scholar]
  5. Chugani H. T., Shewmon D. A., Peacock W. J., Shields W. D., Mazziotta J. C., Phelps M. E. Surgical treatment of intractable neonatal-onset seizures: the role of positron emission tomography. Neurology. 1988 Aug;38(8):1178–1188. doi: 10.1212/wnl.38.8.1178. [DOI] [PubMed] [Google Scholar]
  6. Duffner P. K., Cohen M. E., Seidel F. G., Shucard D. W. The significance of MRI abnormalities in children with neurofibromatosis. Neurology. 1989 Mar;39(3):373–378. doi: 10.1212/wnl.39.3.373. [DOI] [PubMed] [Google Scholar]
  7. Ferner R. E., Chaudhuri R., Bingham J., Cox T., Hughes R. A. MRI in neurofibromatosis 1. The nature and evolution of increased intensity T2 weighted lesions and their relationship to intellectual impairment. J Neurol Neurosurg Psychiatry. 1993 May;56(5):492–495. doi: 10.1136/jnnp.56.5.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flowers D. L., Wood F. B., Naylor C. E. Regional cerebral blood flow correlates of language processes in reading disability. Arch Neurol. 1991 Jun;48(6):637–643. doi: 10.1001/archneur.1991.00530180095023. [DOI] [PubMed] [Google Scholar]
  9. Hamacher K., Coenen H. H., Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986 Feb;27(2):235–238. [PubMed] [Google Scholar]
  10. Hurst R. W., Newman S. A., Cail W. S. Multifocal intracranial MR abnormalities in neurofibromatosis. AJNR Am J Neuroradiol. 1988 Mar-Apr;9(2):293–296. [PMC free article] [PubMed] [Google Scholar]
  11. Korf B. R., Carrazana E., Holmes G. L. Patterns of seizures observed in association with neurofibromatosis 1. Epilepsia. 1993 Jul-Aug;34(4):616–620. doi: 10.1111/j.1528-1157.1993.tb00437.x. [DOI] [PubMed] [Google Scholar]
  12. Listernick R., Charrow J., Greenwald M. J., Esterly N. B. Optic gliomas in children with neurofibromatosis type 1. J Pediatr. 1989 May;114(5):788–792. doi: 10.1016/s0022-3476(89)80137-4. [DOI] [PubMed] [Google Scholar]
  13. Lou H. C., Henriksen L., Bruhn P. Focal cerebral dysfunction in developmental learning disabilities. Lancet. 1990 Jan 6;335(8680):8–11. doi: 10.1016/0140-6736(90)90136-s. [DOI] [PubMed] [Google Scholar]
  14. Pappata S., Mazoyer B., Tran Dinh S., Cambon H., Levasseur M., Baron J. C. Effects of capsular or thalamic stroke on metabolism in the cortex and cerebellum: a positron tomography study. Stroke. 1990 Apr;21(4):519–524. doi: 10.1161/01.str.21.4.519. [DOI] [PubMed] [Google Scholar]
  15. Pearce J. The central nervous system pathology in multiple neurofibromatosis. Neurology. 1967 Jul;17(7):691–697. doi: 10.1212/wnl.17.7.691. [DOI] [PubMed] [Google Scholar]
  16. Reivich M., Alavi A., Wolf A., Fowler J., Russell J., Arnett C., MacGregor R. R., Shiue C. Y., Atkins H., Anand A. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985 Jun;5(2):179–192. doi: 10.1038/jcbfm.1985.24. [DOI] [PubMed] [Google Scholar]
  17. Riccardi V. M. Neurofibromatosis update. Neurofibromatosis. 1989;2(5-6):284–291. [PubMed] [Google Scholar]
  18. Rubenstein A. E., Mytilineoau C., Yahr M. D., Revoltella R. P. Neurological aspects of neurofibromatosis. Adv Neurol. 1981;29:11–21. [PubMed] [Google Scholar]
  19. Samuelsson B., Riccardi V. M. Neurofibromatosis in Gothenburg, Sweden. II. Intellectual compromise. Neurofibromatosis. 1989;2(2):78–83. [PubMed] [Google Scholar]
  20. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  21. Theodore W. H., Bairamian D., Newmark M. E., DiChiro G., Porter R. J., Larson S., Fishbein D. Effect of phenytoin on human cerebral glucose metabolism. J Cereb Blood Flow Metab. 1986 Jun;6(3):315–320. doi: 10.1038/jcbfm.1986.54. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES