Abstract
Phosphorus magnetic resonance spectroscopy (31P-MRS) was used to study in vivo the energy metabolism of brain and skeletal muscle in two members of an Italian pedigree with NARP syndrome due to a point mutation at bp 8993 of mtDNA. In the youngest patient, a 13 year old girl with retinitis pigmentosa, ataxia, and psychomotor retardation, there was an alteration of brain energy metabolism shown by a decreased phosphocreatine content, increased [ADP] and decreased phosphorylation potential. The energy metabolism of her skeletal muscle was also abnormal, as shown by resting higher inorganic phosphate and lower phosphocreatine concentrations than in normal subjects. Her mother, a 41 year old woman with minimal clinical involvement, showed a milder derangement of brain energy metabolism and normal skeletal muscle. Findings with MRS showed that this point mutation of mtDNA is responsible for a derangement of energy metabolism in skeletal muscle and even more so in the brain.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argov Z., Bank W. J., Maris J., Peterson P., Chance B. Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology. 1987 Feb;37(2):257–262. doi: 10.1212/wnl.37.2.257. [DOI] [PubMed] [Google Scholar]
- Arnold D. L., Matthews P. M., Radda G. K. Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med. 1984 Sep;1(3):307–315. doi: 10.1002/mrm.1910010303. [DOI] [PubMed] [Google Scholar]
- Arnold D. L., Taylor D. J., Radda G. K. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol. 1985 Aug;18(2):189–196. doi: 10.1002/ana.410180205. [DOI] [PubMed] [Google Scholar]
- Barbiroli B., Funicello R., Ferlini A., Montagna P., Zaniol P. Muscle energy metabolism in female DMD/BMD carriers: a 31P-MR spectroscopy study. Muscle Nerve. 1992 Mar;15(3):344–348. doi: 10.1002/mus.880150313. [DOI] [PubMed] [Google Scholar]
- Barbiroli B., Montagna P., Cortelli P., Funicello R., Iotti S., Monari L., Pierangeli G., Zaniol P., Lugaresi E. Abnormal brain and muscle energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology. 1992 Jun;42(6):1209–1214. doi: 10.1212/wnl.42.6.1209. [DOI] [PubMed] [Google Scholar]
- Barbiroli B., Montagna P., Cortelli P., Martinelli P., Sacquegna T., Zaniol P., Lugaresi E. Complicated migraine studied by phosphorus magnetic resonance spectroscopy. Cephalalgia. 1990 Oct;10(5):263–272. doi: 10.1046/j.1468-2982.1990.1005263.x. [DOI] [PubMed] [Google Scholar]
- Barbiroli B., Montagna P., Martinelli P., Lodi R., Iotti S., Cortelli P., Funicello R., Zaniol P. Defective brain energy metabolism shown by in vivo 31P MR spectroscopy in 28 patients with mitochondrial cytopathies. J Cereb Blood Flow Metab. 1993 May;13(3):469–474. doi: 10.1038/jcbfm.1993.61. [DOI] [PubMed] [Google Scholar]
- Bottomley P. A., Hardy C. J. Rapid, reliable in vivo assays of human phosphate metabolites by nuclear magnetic resonance. Clin Chem. 1989 Mar;35(3):392–395. [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
- Chance B., Leigh J. S., Jr, Clark B. J., Maris J., Kent J., Nioka S., Smith D. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8384–8388. doi: 10.1073/pnas.82.24.8384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B., Leigh J. S., Jr, Kent J., McCully K., Nioka S., Clark B. J., Maris J. M., Graham T. Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9458–9462. doi: 10.1073/pnas.83.24.9458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conway M. A., Allis J., Ouwerkerk R., Niioka T., Rajagopalan B., Radda G. K. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991 Oct 19;338(8773):973–976. doi: 10.1016/0140-6736(91)91838-l. [DOI] [PubMed] [Google Scholar]
- Cortelli P., Montagna P., Avoni P., Sangiorgi S., Bresolin N., Moggio M., Zaniol P., Mantovani V., Barboni P., Barbiroli B. Leber's hereditary optic neuropathy: genetic, biochemical, and phosphorus magnetic resonance spectroscopy study in an Italian family. Neurology. 1991 Aug;41(8):1211–1215. doi: 10.1212/wnl.41.8.1211. [DOI] [PubMed] [Google Scholar]
- Eleff S. M., Barker P. B., Blackband S. J., Chatham J. C., Lutz N. W., Johns D. R., Bryan R. N. Phosphorus magnetic resonance spectroscopy of patients with mitochondrial cytopathies demonstrates decreased levels of brain phosphocreatine. Ann Neurol. 1990 Jun;27(6):626–630. doi: 10.1002/ana.410270607. [DOI] [PubMed] [Google Scholar]
- Gyulai L., Roth Z., Leigh J. S., Jr, Chance B. Bioenergetic studies of mitochondrial oxidative phosphorylation using 31phosphorus NMR. J Biol Chem. 1985 Apr 10;260(7):3947–3954. [PubMed] [Google Scholar]
- Harding A. E., Holt I. J., Sweeney M. G., Brockington M., Davis M. B. Prenatal diagnosis of mitochondrial DNA8993 T----G disease. Am J Hum Genet. 1992 Mar;50(3):629–633. [PMC free article] [PubMed] [Google Scholar]
- Holt I. J., Harding A. E., Petty R. K., Morgan-Hughes J. A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet. 1990 Mar;46(3):428–433. [PMC free article] [PubMed] [Google Scholar]
- Iotti S., Lodi R., Frassineti C., Zaniol P., Barbiroli B. In vivo assessment of mitochondrial functionality in human gastrocnemius muscle by 31P MRS. The role of pH in the evaluation of phosphocreatine and inorganic phosphate recoveries from exercise. NMR Biomed. 1993 Jul-Aug;6(4):248–253. doi: 10.1002/nbm.1940060404. [DOI] [PubMed] [Google Scholar]
- Montagna P., Martinelli P., Cortelli P., Zaniol P., Lugaresi E., Barbiroli B. Brain 31P-magnetic resonance spectroscopy in mitochondrial cytopathies. Ann Neurol. 1992 Apr;31(4):451–452. doi: 10.1002/ana.410310422. [DOI] [PubMed] [Google Scholar]
- Puddu P., Barboni P., Mantovani V., Montagna P., Cerullo A., Bragliani M., Molinotti C., Caramazza R. Retinitis pigmentosa, ataxia, and mental retardation associated with mitochondrial DNA mutation in an Italian family. Br J Ophthalmol. 1993 Feb;77(2):84–88. doi: 10.1136/bjo.77.2.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatuch Y., Christodoulou J., Feigenbaum A., Clarke J. T., Wherret J., Smith C., Rudd N., Petrova-Benedict R., Robinson B. H. Heteroplasmic mtDNA mutation (T----G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet. 1992 Apr;50(4):852–858. [PMC free article] [PubMed] [Google Scholar]
- Tatuch Y., Robinson B. H. The mitochondrial DNA mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria. Biochem Biophys Res Commun. 1993 Apr 15;192(1):124–128. doi: 10.1006/bbrc.1993.1390. [DOI] [PubMed] [Google Scholar]
- Taylor D. J., Bore P. J., Styles P., Gadian D. G., Radda G. K. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med. 1983 Jul;1(1):77–94. [PubMed] [Google Scholar]
- Taylor D. J., Styles P., Matthews P. M., Arnold D. A., Gadian D. G., Bore P., Radda G. K. Energetics of human muscle: exercise-induced ATP depletion. Magn Reson Med. 1986 Feb;3(1):44–54. doi: 10.1002/mrm.1910030107. [DOI] [PubMed] [Google Scholar]
- Veech R. L., Lawson J. W., Cornell N. W., Krebs H. A. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed] [Google Scholar]
- Wallace D. C., Zheng X. X., Lott M. T., Shoffner J. M., Hodge J. A., Kelley R. I., Epstein C. M., Hopkins L. C. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988 Nov 18;55(4):601–610. doi: 10.1016/0092-8674(88)90218-8. [DOI] [PubMed] [Google Scholar]