Skip to main content
Biomimetics logoLink to Biomimetics
. 2023 Dec 17;8(8):619. doi: 10.3390/biomimetics8080619

Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems

Omar Alsayyed 1, Tareq Hamadneh 2, Hassan Al-Tarawneh 3, Mohammad Alqudah 4, Saikat Gochhait 5,6, Irina Leonova 6,7, Om Parkash Malik 8, Mohammad Dehghani 9,*
Editor: Huiling Chen
PMCID: PMC10741582  PMID: 38132558

Abstract

In this paper, a new bio-inspired metaheuristic algorithm called Giant Armadillo Optimization (GAO) is introduced, which imitates the natural behavior of giant armadillo in the wild. The fundamental inspiration in the design of GAO is derived from the hunting strategy of giant armadillos in moving towards prey positions and digging termite mounds. The theory of GAO is expressed and mathematically modeled in two phases: (i) exploration based on simulating the movement of giant armadillos towards termite mounds, and (ii) exploitation based on simulating giant armadillos’ digging skills in order to prey on and rip open termite mounds. The performance of GAO in handling optimization tasks is evaluated in order to solve the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that GAO is able to achieve effective solutions for optimization problems by benefiting from its high abilities in exploration, exploitation, and balancing them during the search process. The quality of the results obtained from GAO is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that GAO presents superior performance compared to competitor algorithms by providing better results for most of the benchmark functions. The statistical analysis of the Wilcoxon rank sum test confirms that GAO has a significant statistical superiority over competitor algorithms. The implementation of GAO on the CEC 2011 test suite and four engineering design problems show that the proposed approach has effective performance in dealing with real-world applications.

Keywords: optimization, bio-inspired, metaheuristic, giant armadillo, exploration, exploitation

1. Introduction

There are many problems in mathematics, science, and real-world applications that have more than one feasible solution. These types of problems are known as optimization problems, and the process of obtaining the best feasible solution among all these existing solutions is called optimization [1]. Each optimization problem is mathematically modeled using three main parts: decision variables, problem constraints, and an objective function. The goal in optimization is to allocate appropriate values for decision variables so that the objective function is optimized by respecting the constraints of the problem [2]. There are numerous optimization problems in science, mathematics, engineering, technology, industry, and real-world applications that need to be solved using optimization techniques. Problem-solving techniques for solving optimization problems are classified into two classes: deterministic and stochastic approaches [3]. Deterministic approaches in two categories, gradient-based and non-gradient-based, are effective in solving linear, convex, continuous, differentiable, and low-dimensional problems [4]. However, as optimization problems become more complex, especially as the problem dimensions increase, deterministic approaches stop getting stuck in local optima [5]. This is despite the fact that many practical optimization problems are non-linear, non-convex, non-differentiable, non-continuous, and high-dimensional. The disadvantages of deterministic approaches in order to solve practical optimization problems in science have led to researchers’ efforts in designing stochastic approaches [6].

Metaheuristic algorithms are among the most efficient and well-known stochastic approaches that have been used to deal with numerous optimization problems. These algorithms are able to provide suitable solutions for optimization problems based on random search in the problem-solving space and benefit from random operators and trial-and-error processes. The optimization mechanism in metaheuristic algorithms starts with the random generation of a certain number of candidate solutions under the name of algorithm population. Then, these candidate solutions are improved during successive iterations and based on the population update steps of the algorithm. After the full implementation of the algorithm, the best candidate solution obtained is presented as a solution to the problem [7]. The nature of stochastic search results in no guarantee of definitively achieving the global optimum using metaheuristic algorithms. However, due to being close to the global optimum, the solutions obtained from metaheuristic algorithms are acceptable as pseudo-optimal [8]. The desire of researchers to achieve more effective solutions closer to the global optimum for optimization problems has led to the design of numerous metaheuristic algorithms [9]. These metaheuristic algorithms have been used to tackle optimization problems in various sciences, such as static optimization problems [10], green product design [11], feature selection [12], design for disassembly [13], image segmentation [14], and wireless sensor network applications [15].

Metaheuristic algorithms will be able to achieve effective solutions for optimization problems when they search the problem-solving space well at both global and local levels. Global search expresses the exploration power of the algorithm in the extensive search in the problem-solving space with the aim of discovering the main optimal area and preventing the algorithm from getting stuck in local optima. Local search represents the exploitation power of the algorithm in the exact search near the promising areas of the problem-solving space and the discovered solutions. In addition to exploration and exploitation abilities, what leads to the success of a metaheuristic algorithm in providing a suitable solution for an optimization problem is their balancing during the search process in the problem-solving space [16].

The main research question is: according to the many metaheuristic algorithms designed so far, is there still a need to introduce newer metaheuristic algorithms in science or not? In response to this question, the No Free Lunch (NFL) [17] theorem explains that the successful performance of a metaheuristic algorithm in solving a set of optimization problems is no guarantee for the similar performance of that algorithm in solving other optimization problems. In fact, an algorithm may even converge to the global optimum in solving an optimization problem but fail in solving another problem by getting stuck in the local optimum. Therefore, there is no assumption about the failure or success of implementing a metaheuristic algorithm on an optimization problem. The NFL theorem explains that in no way can it be claimed that a unique metaheuristic algorithm is the best optimizer for all optimization problems. The NFL theorem, by keeping active the studies of metaheuristic algorithms, motivates researchers to be able to achieve more effective solutions for optimization problems by designing newer algorithms.

The innovation and novelty of this paper is the introduction of a new metaheuristic algorithm called Giant Armadillo Optimization (GAO) to solve optimization problems in various sciences. The main contributions of this study are as follows:

  • GAO is designed based on simulating the natural behavior of giant armadillos in the wild.

  • The fundamental inspiration for GAO is taken from the strategy of giant armadillos when attacking termite mounds.

  • The GAO theory has been described and mathematically modeled in two phases: (i) exploration based on simulating the movement of giant armadillos towards termite mounds, and (ii) exploitation based on simulating giant armadillos’ digging skills in order to prey on and rip open termite mounds.

  • The performance of GAO is evaluated on the CEC 2017 test suite for problem dimensions of 10, 30, 50, and 100.

  • The performance of GAO in handling real-world applications is evaluated in handling twenty-two constrained optimization problems from the CEC 2011 test suite and four engineering design problems.

  • The results obtained from GAO are compared with the performance of twelve well-known metaheuristic algorithms.

The proposed GAO approach has several advantages for global optimization problems. The first advantage of GAO is that there is no control parameter in the design of this algorithm, and therefore there is no need to control the parameters in any way. The second advantage of GAO is its high effectiveness in dealing with a variety of optimization problems in various sciences as well as complex, high-dimensional problems. The third advantage of the proposed GAO method is that it shows its great ability to balance exploration and exploitation in the search process, which allows it high-speed convergence to provide suitable values for decision variables in optimization tasks, especially in complex problems. The fourth advantage of the proposed GAO is its powerful performance in handling real-world optimization applications.

The structure of this paper is as follows: A literature review is presented in Section 2. Then, the proposed Giant Armadillo Optimization (GAO) is introduced and modeled in Section 3. Simulation studies and results are presented in Section 4. The effectiveness of GAO in solving real-world applications is investigated in Section 5. Conclusions and suggestions for future research are provided in Section 6.

2. Literature Review

Metaheuristic algorithms have been developed with inspiration from various natural phenomena, the behaviors of living organisms in the wild, genetic, biological, and physics sciences, game rules, human interactions, and other evolutionary phenomena. Metaheuristic algorithms are classified into five groups based on the main idea in design: swarm-based, evolutionary-based, physics-based, human-based, and game-based approaches.

Swarm-based metaheuristic algorithms are inspired by the lifestyles of animals, birds, insects, aquatics, reptiles, and other living creatures in the wild. The most well-known algorithms in this group are: Particle Swarm Optimization (PSO) [18], Ant Colony Optimization (ACO) [19], Artificial Bee Colony (ABC) [20], and Firefly Algorithm (FA) [21]. PSO is inspired by the group movement of flocks of birds and fish towards food sources. ACO is inspired by the ability of ants to discover the optimal communication path between the colony and the food source. ABC is inspired by the activities of colony bees searching for food sources. FA is inspired by optical communication between fireflies. The Grey Wolf Optimizer (GWO) is a swarm-based metaheuristic algorithm that is inspired by the hierarchical leadership structure and social behavior of gray wolves during hunting [22]. Green Anaconda Optimization (GAO) is inspired by the ability of male green anacondas to detect the position of females during the mating season and the hunting strategy of green anacondas [23]. Among the natural behaviors of living organisms in the wild, foraging, hunting, digging, migration, and chasing are much more prominent and have been employed in the design of algorithms such as: Honey Badger Algorithm (HBA) [24], African Vultures Optimization Algorithm (AVOA), Whale Optimization Algorithm (WOA) [25], Orca Predation Algorithm (OPA) [26], Reptile Search Algorithm (RSA) [27], Kookaburra Optimization Algorithm (KOA) [28], Mantis Search Algorithm (MSA) [29], Liver Cancer Algorithm (LCA) [30], Marine Predator Algorithm (MPA) [31], Tunicate Swarm Algorithm (TSA) [32], White Shark Optimizer (WSO) [33], and Golden Jackal Optimization (GJO) [34].

Evolutionary-based metaheuristic algorithms are designed with inspiration from genetic and biological sciences, concepts of natural selection, survival of the fittest, Darwin’s theory of evolution, and evolutionary operators. Genetic Algorithm (GA) [35] and Differential Evolution (DE) [36] are the most famous algorithms of this group, which are developed inspired by the reproduction process, genetic and biological concepts, and evolutionary-random operators of crossover, selection, and mutation. Artificial Immune Systems (AISs) are inspired by the mechanisms of the human body’s immune system against microbes and diseases [37]. Some other evolutionary-based metaheuristic algorithms are: Genetic programming (GP) [38], Cultural Algorithm (CA) [39], and Evolution Strategy (ES) [40].

Physics-based metaheuristic algorithms are designed with inspiration from the phenomena, forces, transformations, laws, and concepts of physics. Simulated Annealing (SA) is one of the most widely used algorithms of this group, which is inspired by the annealing process of metals, in which metals are first melted under heat, then slowly cooled with the aim of achieving an ideal crystal. Physical forces and Newton’s laws of motion have been the source of design in algorithms such as the Momentum Search Algorithm (MSA) [41] based on momentum force, the Gravitational Search Algorithm (GSA) based on gravitational attraction force [42], and the Spring Search Algorithm (SSA) [43] based on the elastic force of the spring and Hooke’s law. Cosmological concepts have been the origin of design in algorithms such as the Multi-Verse Optimizer (MVO) [44] and the Black Hole Algorithm (BHA) [45]. Some other physics-based metaheuristic algorithms are: Archimedes Optimization Algorithm (AOA) [46], Water Cycle Algorithm (WCA) [47], Artificial Chemical Process (ACP) [48], Chemotherapy Science Algorithm (CSA) [49], Nuclear Reaction Optimization (NRO) [50], Henry Gas Optimization (HGO) [51], Electro-Magnetism Optimization (EMO) [52], Lichtenberg Algorithm (LA) [53], Thermal Exchange Optimization (TEO) [54], and Equilibrium Optimizer (EO) [55].

Human-based metaheuristic algorithms are designed with inspiration from thoughts, choices, decisions, communication, interactions, and other human activities in individual and social life. Teaching-Learning-Based Optimization (TLBO) is one of the most famous human-based metaheuristic algorithms, which is introduced with the inspiration of educational communication in the classroom environment and the exchange of knowledge between teachers and students and students with each other [56]. The Mother Optimization Algorithm (MOA) is proposed based on the modeling of Eshrat’s care of her children [57]. Doctor and Patient Optimization (DPO) is introduced based on modeling the process of treating patients by doctors [58]. Sewing Training-Based Optimization (STBO) is proposed with the inspiration of teaching sewing skills by the instructor to students in sewing schools [59]. Ali Baba and the Forty Thieves (AFT) is presented based on modeling the strategies of forty thieves in the search for Ali Baba [60]. Some other human-based metaheuristic algorithms are: Election-Based Optimization Algorithm (EBOA) [61], Coronavirus Herd Immunity Optimizer (CHIO) [62], Group Teaching Optimization Algorithm (GTOA) [63], Ebola Optimization Search Algorithm (ESOA) [64], Driving Training-Based Optimization (DTBO) [5], Gaining Sharing Knowledge-Based Algorithm (GSK) [65], and War Strategy Optimization (WSO) [66].

Game-based metaheuristic algorithms are inspired by the rules governing individual and team games and the strategies of players, coaches, referees, and other influential people in these games. Darts Game Optimizer (DGO) is one of the most well-known game-based metaheuristic algorithms, whose design is inspired by the strategy and skill of players in throwing darts and collecting points [67]. Hide Object Game Optimizer (HOGO) is proposed based on the simulation of players’ strategies for finding the hidden object on the playing field [68]. The Orientation Search Algorithm (OSA) is designed based on modeling the players’ position changes on the playing field based on the referee’s commands [69]. Some other game-based metaheuristic algorithms are: Ring toss game-based optimization (RTGBO) [70], Football Game Based Optimization (FGBO) [71], Archery Algorithm (AA) [6], Golf Optimization Algorithm (GOA) [72], and Volleyball Premier League (VPL) [73].

Some other recently proposed metaheuristic algorithms are: Monarch Butterfly Optimization (MBO) [74], Slime Mould Algorithm (SMA) [75], Moth Search Algorithm (MSA) [76], Hunger Games Search (HGS) [77], Runge Kutta method (RUN) [78], Colony Predation Algorithm (CPA) [79], weighted mean of vectors (INFO) [80], Harris Hawks Optimization (HHO) [81], and Rime optimization algorithm (RIME) [82].

Based on the best knowledge obtained from the literature review, no metaheuristic algorithm inspired by the natural behavior of giant armadillos in nature has been designed so far. This is while the strategy of giant armadillos in attacking termite mounds and digging them is an intelligent process that has a special potential for designing a new optimizer. In order to address this research gap, a new bio-inspired metaheuristic algorithm is introduced in this paper based on the mathematical modeling of the strategy of giant armadillos in attacking and hunting in termite mounds, which is discussed in the next section.

3. Giant Armadillo Optimization

In this section, the source of inspiration in the design of the proposed Giant Armadillo Optimization (GAO) approach is stated, and then it is mathematically modeled in order to use it in optimization applications.

3.1. Inspiration for GAO

The giant armadillo (Priodontes maximus) is the largest living species of armadillo in danger of extinction and lives in South America, ranging as far south as northern Argentina [83]. Termites and ants are the main diet of giant armadillos. However, this animal also feeds on plants, larvae, worms, and larger creatures, such as snakes and spiders. In order to feed on termites, giant armadilloes attack termite mounds and then use their digging power to prey on and rip open termite mounds.

The giant armadillo has 3 or 4 hinged bands protecting the neck and another 11 to 13 hinged bands that protect the body [84]. Its body is dark brown with a lighter yellowish band along the sides, and its head is pale and yellowish-white. It also has very long front paws, up to 22 cm long. The tail is covered in small, rounded scales. The giant armadillo is almost entirely hairless. Giant armadillos weigh approximately 18.7–32.5 kg, although specimens weighing 54 kg and 80 kg have also been observed. Their length without including the tail is between 75 and 100 cm, and the length of their tail is about 50 cm [85]. An image of the giant armadillo is shown in Figure 1.

Figure 1.

Figure 1

Giant armadillo taken from: free media Wikimedia Commons.

Among the natural behaviors of the giant armadillo, the strategy of this animal when it attacks termite mounds and then digs them with the aim of hunting and feeding on termites is much more prominent. Mathematical modeling of these two natural behaviors of giant armadillos during hunting, namely (i) attacking termite mounds and (ii) digging termite mounds in order to feed on them, has been employed in the design of the proposed GAO approach, which is discussed below.

Among the natural behaviors of giant armadillos, the hunting strategy of this animal is much more prominent. The giant armadillo hunting process has two stages: (i) moving towards termite mounds and (ii) digging in termite mounds in order to feed on termites. Mathematical modeling of these natural behaviors of the giant armadillo during hunting is employed in the design of the proposed GAO approach, which is discussed below.

3.2. Solution Process of the GAO

The proposed GAO approach is a biomimetics metaheuristic algorithm that mimics the natural behavior of the giant armadillo in the wild. Among the natural behaviors of the giant armadillo, the strategy of this animal in attacking termite mounds and then digging in them for feeding is employed in the GAO design. In this modeling, the wild life of the giant armadillo corresponds to the problem-solving space, and the position of each giant armadillo in the wild corresponds to the position of each GAO member in the problem-solving space as a candidate solution. The general solution process of the algorithm in GAO is explained in Algorithm 1.

Algorithm 1: Solution process of GAO
Start.
  1. A certain number of giant armadillos are randomly initialized in the problem-solving space as a population of the algorithm, each representing a candidate solution for the problem.

  2. Based on the evaluation of each of the candidate solutions in the objective function and the comparison of the obtained values, the best GAO member is identified as the best candidate solution.

  3. In the first phase of the GAO, based on the modeling of the movement of the giant armadillo towards the termite mounds, the position of the GAO members in the problem-solving space and, as a result, the candidate solutions are updated.

  4. In the second phase of GAO, based on the modeling of the small displacements of the giant armadillo while digging in termite mounds, the position of GAO members in the problem-solving space and, as a result, candidate solutions are updated.

  5. The third and fourth steps are repeated for all GAO members.

  6. Based on the comparison of the new evaluated values for the objective function corresponding to the updated candidate solutions, the best candidate solution is identified, updated, and stored.

  7. The third to sixth steps are repeated until the last iteration of the algorithm.

  8. The best candidate solution obtained during the iterations of the algorithm is presented as the GAO solution for the given problem.

End.

In the following, the solution process described for GAO is mathematically modeled in full.

3.3. Mathematical Modeling of GAO

In this subsection, the implementation steps of GAO are fully modeled. For this purpose, first, the initialization process of GAO has been explained and modeled. Then, the mathematical model of the process of updating candidate solutions in two phases of exploration and exploitation is presented.

3.3.1. Algorithm Initialization

The proposed GAO approach is a population-based meta-heuristic algorithm that assumes that giant armadillos form its population. GAO is able to provide suitable solutions for optimization problems in an iterative process based on the search power of its members in the problem-solving space. Each GAO member, based on his position in the problem-solving space, determines the values for the decision variables of the problem. Therefore, each giant armadillo, as a member of the population, is a candidate solution to the problem that is modeled from a mathematical point of view using a vector. Giant armadillos together form the population of the algorithm, which can be modeled from a mathematical point of view using a matrix according to Equation (1). The primary position of the giant armadillos in the problem-solving space is randomly initialized at the beginning of the algorithm execution using Equation (2).

X=[X1XiXN]N×m=[x1,1x1,dx1,mxi,1xi,dxi,mxN,1xN,dxN,m]N×m (1)
xi,d=lbd+r·(ubdlbd) (2)

Here, X is the GAO population matrix, Xi is the ith GAO member (candidate solution), xi,d is its dth dimension in search space (decision variable), N is the number of giant armadillos, m is the number of decision variables, r is a random number in interval [0,1], lbd, and ubd are the lower bound and upper bound of the dth. decision variable, respectively.

Since the position of each giant armadillo in the problem-solving space represents a candidate solution for the problem, a value for the objective function can be evaluated corresponding to each giant armadillo. According to this, the set of evaluated values for the objective function can be represented using Equation (3).

F=[F1FiFN]N×1=[F(X1)F(Xi)F(XN)]N×1 (3)

Here, F is the vector of the evaluated objective function, and Fi is the evaluated objective function based on the ith GAO member.

The evaluated values for the objective function provide valuable information about the quality of the candidate solutions proposed by the population members. The best value obtained for the objective function corresponds to the best member (i.e., the best candidate solution), and the worst value obtained for the objective function corresponds to the worst member (i.e., the worst candidate solution). Since in each iteration, the position of the giant armadillos in the problem-solving space is updated, the best member should also be updated based on the comparison of the updated values for the objective function. At the end of the implementation of the algorithm, the position of the best member obtained during the iterations of the algorithm is presented as a solution to the problem.

In the design of the proposed GAO approach, the position of the population members in the problem-solving space is updated based on the modeling of the hunting strategy of giant armadillos in the wild. In this process, the giant armadillo first attacks the position of termite mounds, then digs in termite mounds to hunt and eat termites. According to this, in each iteration of GAO, the position of the population members is updated in two phases: (i) exploration, based on the simulation of the movement of giant armadillos towards termite mounds, and (ii) exploitation, based on the simulation of giant armadillos digging in termite mounds to feed on termites.

3.3.2. Phase 1: Attack on Termite Mounds (Exploration Phase)

In the first phase of GAO, the position of the population members in the problem-solving space is updated based on the simulation of the attack of the giant armadillo towards the termite mounds during hunting. In the GAO design, it is inspired by the changing position of the giant armadillo while moving towards the termite mounds in order to update the position of the population members in the problem-solving space. Modeling this attack process leads to extensive changes in the position of the giant armadillo and, as a result, increases the exploration power of the algorithm in global search management.

In the GAO design, for each population member that represents a giant armadillo, the location of other population members that have a better objective function value is considered a termite mound. The set of candidate termite mounds for each member of the population is specified using Equation (4).

TMi={Xk:Fk<Fi and ki}, where i=1,2, , N and k{1,2, , N} (4)

Here, TMi is the set of candidate termite mounds’ locations for the ith giant armadillo, Xk is the population member with a better objective function value than the ith giant armadillo, and Fk is its objective function value.

The giant armadillo randomly selects one of the candidate termite mounds and attacks it. Based on modeling the movement of giant armadilloes towards termite mounds, a new position is calculated for each member of the population using Equation (5). Then, this new position replaces the previous position of the corresponding member if it improves the value of the objective function according to Equation (6).

xi,jP1=xi,j+ri,j·(STMi,jIi,j·xi,j), (5)
Xi={XiP1,  FiP1Fi,Xi,  else, (6)

Here, STMi is the selected termite mound for ith giant armadillo, STMi,j is its jth dimension, XiP1 is the new position calculated for the ith giant armadillo based on attacking phase of the proposed GAO, xi,jP1 is its jth dimension, FiP1 is its objective function value, ri,j are random numbers from the interval [0, 1], and Ii,j are numbers which are randomly selected as 1 or 2.

3.3.3. Phase 2: Digging in Termite Mounds (Exploitation Phase)

In the second phase of GAO, the position of population members in the problem-solving space is updated based on the simulation of giant armadillo digging in termite mounds to feed on termites. Modeling this giant armadillo digging process with the aim of hunting and eating termites leads to small changes in the position of the giant armadillo and, as a result, increases the exploitation power of the algorithm in local search management.

In the GAO design, based on modeling the skill of the giant armadillo to dig in termite mounds, a new position is calculated for each member of the population using Equation (7). Then, if the value of the objective function is improved, this new position replaces the previous position of the corresponding member according to Equation (8).

xi,jP2=xi,j+(12 ri,j)·ubjlbjt   (7)
Xi={XiP2,  FiP2FiXi,  else (8)

Here, XiP2 is the new position calculated for the ith giant armadillo based on digging phase of the proposed GAO, xi,jP2 is its jth dimension, FiP2 is its objective function value, ri,j are random numbers from the interval [0, 1], and t is the iteration counter.

3.4. Repetition Process, Pseudocode, and Flowchart of GAO

After updating the position of all giant armadillos in the problem-solving space based on the attack and digging phases, the first iteration of GAO is completed. After that, the algorithm enters the next iteration, and the process of updating the position of giant armadillos in the problem-solving space continues until the last iteration of the algorithm using Equations (4)–(8). In each iteration, the position of the best GAO member is updated and stored as the best candidate solution. After the full implementation of GAO on the given problem, the best candidate solution recorded during the iterations of the algorithm is presented as the solution to the problem. The implementation steps of GAO are presented as a flowchart in Figure 2, and its pseudocode is presented in Algorithm 2. The complete set of codes is available at the following repository: https://uk.mathworks.com/matlabcentral/fileexchange/156329-giant-armadillo-optimization (accessed on 13 November 2023).

Algorithm 2: Pseudocode of GAO
Start GAO.
1. Input problem information: variables, objective function, and constraints.
2. Set GAO population size (N) and iterations (T).
3. Generate the initial population matrix at random using Equation (2). xi,dlbd+r·(ubdlbd)
4. Evaluate the objective function.
5. For t=1 to T
6. For i=1 to N
7. Phase 1: Attack on termite mounds (exploration phase)
8. Determine the termite mounds set for the ith GAO member using Equation (4). TMi{Xki:Fki<Fi and kii}
9. Select the termite mounds for the ith GAO member at random.
10. Calculate new position of ith GAO member using Equation (5). xi,dP1xi,d+r·(STMi,dI·xi,d)
11. Update ith GAO member using Equation (6). Xi{XiP1,  FiP1<FiXi,  else
12. Phase 2: Digging in termite mounds (exploitation phase)
13. Calculate new position of ith GAO member using Equation (7). xi,dP2xi,d+(12r)·(ubdlbd)t
14. Update ith GAO member using Equation (8). Xi{XiP2,  FiP2<FiXi,  else
15. end
16. Save the best candidate solution so far.
17. end
18. Output the best quasi-optimal solution obtained with the GAO.
End GAO.

Figure 2.

Figure 2

Flowchart of GAO.

3.5. Computational Complexity of GAO

In this subsection, the computational complexity of the proposed GAO approach is evaluated. The preparation and initialization process of GAO has a computational complexity equal to O(Nm), where N is the number of giant armadillos and m is the number of decision variables of the problem. In the GAO design, in each iteration, the position of each giant armadillo is updated in two phases of exploration and exploitation. Therefore, the GAO update process has a computational complexity equal to O(2NmT), where T is the maximum number of iterations of the algorithm. According to this, the total computational complexity of the proposed GAO approach is equal to O(Nm(1 + 2T)).

3.6. Comparing GAO vs. PSO

In this subsection, the proposed GAO approach is compared with PSO. PSO is a well-known bio-inspired metaheuristic algorithm that has been used in many optimization applications by researchers.

In terms of the main design idea, PSO is inspired by the collective movement of groups of birds or fish that are searching for food. On the other hand, GAO was inspired by the giant armadillo’s strategy of attacking termite mounds and digging to feed on them. So, the difference in the main design idea is evident.

In PSO, the position of each member of the population is updated according to the position of the best member of the population and the previous best position of the corresponding member. On the other hand, the position of each member of the population in the problem-solving space is updated based on the position of a better member (from the point of view of comparing the value of the objective function) and also based on local search management near each member’s position.

A very important point in GAOs performance is that it has avoided a heavy dependence of the population update process on the best members. These conditions lead to the improvement of GAOs performance in global search management, preventing premature convergence, and preventing the algorithm from getting stuck in local optima. Meanwhile, in the design of PSO, the update process relies heavily on the position of the best member, which leads to inappropriate rapid convergence and stops the entire population from adopting a similar solution.

Another important point in the design of metaheuristic algorithms is the control parameters. Determining the values of control parameters is a challenging process, and for this reason, the design of parameter-less approaches is considered a major advantage. The mathematical model of PSO has three control parameters, the value of which has a significant impact on the performance of this algorithm. This is despite the fact that no control parameters are included in the design of GAO, and from this point of view, GAO is a parameter-less approach.

4. Simulation Studies and Results

In this section, GAOs performance in solving optimization problems is evaluated. For this purpose, the efficiency of GAO is tested in handling the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100.

4.1. Performance Comparison

In order to measure the effectiveness of GAO in solving optimization problems, the obtained results are compared with the performance of twelve famous metaheuristic algorithms: GA [35], PSO [18], GSA [42], TLBO [56], MVO [44], GWO [22], WOA [25], MPA [31], TSA [32], RSA [27], AVOA [86], and WSO [33]. From the numerous optimization algorithms designed so far, these twelve methods have been selected for comparison with GAO. The reason for choosing these twelve competitor algorithms is that GA and PSO are the best-known and most widely used optimization algorithms. GSA, TLBO, MVO, and GWO, introduced between 2009 and 2016, have been popular methods for researchers and have been widely cited. WOA, MPA, and TSA algorithms are among the most widely used techniques introduced from 2016 to 2020. RSA, AVOA, and WSO are recently developed optimizers that have quickly gained the attention of scientists and have been used in a variety of real-world applications. The control parameter values of metaheuristic algorithms are specified in Appendix A and Table A1. The results of simulation studies are presented using six statistical indicators: mean, best, worst, standard deviation (std), median, and rank. The values obtained for the mean index are used as a ranking criterion for metaheuristic algorithms in handling each of the benchmark functions.

4.2. Evaluation of the CEC 2017 Test Suite

In this subsection, the performance of GAO and competitor algorithms is benchmarked in handling the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The CEC 2017 test suite has 30 standard benchmark functions consisting of (i) three unimodal functions of C17-F1 to C17-F3, (ii) seven multimodal functions of C17-F4 to C17-F10, (iii) ten hybrid functions of C17-F11 to C17-F20, and (iv) ten composition functions of C17-F21 to C17-F30. The C17-F2 functional is excluded from simulation studies due to its unstable behavior. Full information and more details about the CEC 2017 test suite are available at [87].

The implementation results of GAO and competitor algorithms on the CEC 2017 test suite are reported in Table 1, Table 2, Table 3 and Table 4. Boxplot diagrams obtained from the performance of metaheuristic algorithms are drawn in Figure 3, Figure 4, Figure 5 and Figure 6.

Table 1.

Optimization results of the CEC 2017 test suite (dimension = 10).

GAO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C17-F1 mean 100 4.67E+09 4,184,979 8.73E+09 34,330,739 1.49E+09 9,692,832 4,188,121 79,553,526 1.3E+08 4,182,333 4,184,382 14,308,636
best 100 3.93E+09 3746.743 7.56E+09 10,903.05 3.19E+08 4,981,868 8834.837 25,081.34 56,192,560 1415.894 1625.786 6,732,111
worst 100 5.85E+09 15,192,929 1.04E+10 1.25E+08 3.24E+09 19,205,398 15,201,956 2.89E+08 3.03E+08 15,192,873 15,193,484 26,519,809
std 0 9.08E+08 8,022,380 1.4E+09 65,875,245 1.41E+09 7,002,724 8,026,144 1.53E+08 1.27E+08 8,023,882 8,022,667 9,534,136
median 100 4.44E+09 771,620 8.48E+09 6,292,615 1.2E+09 7,292,030 770,846.8 14,580,526 80,111,109 767,520.9 771,208.3 11,991,311
rank 1 12 4 13 8 11 6 5 9 10 2 3 7
C17-F3 mean 300 6653.076 432.8431 8416.704 1377.331 9744.62 1652.665 431.2721 2796.49 795.3626 8937.772 431.2255 12,795.02
best 300 3819.149 358.2124 4752.444 777.91 3952.712 640.1711 358.2232 1407.456 504.4881 5625.365 358.2123 4024.146
worst 300 8784.409 568.2645 11,138.08 2473.984 13,631.64 2947.044 564.9107 5337.754 1012.646 12,088.54 564.8045 20,125.74
std 0 2369.321 104.7758 3175.356 851.6238 4471.714 1195.34 103.7782 1973.46 249.9022 2890.252 103.7329 9176.458
median 300 7004.373 402.4478 8888.145 1128.715 10,697.06 1511.722 400.9773 2220.375 832.1585 9018.593 400.9426 13,515.1
rank 1 9 4 10 6 12 7 3 8 5 11 2 13
C17-F4 mean 400 843.9185 404.8598 1213.807 406.5485 551.6274 422.2989 403.6485 410.833 408.6382 404.6903 418.1641 413.3818
best 400 633.9161 401.4788 781.7224 402.3817 466.9688 406.857 401.7805 405.4965 408.3648 403.4626 400.3805 411.3341
worst 400 1034.209 406.7134 1637.197 411.0784 649.5213 463.1789 405.3186 425.5967 409.1148 406.3282 461.3011 416.8981
std 0 195.1214 2.525052 397.3324 4.668634 97.40747 29.75653 1.658473 10.72221 0.357177 1.561991 31.59144 2.777032
median 400 853.7743 405.6236 1218.153 406.3669 545.0096 409.5799 403.7475 406.1195 408.5367 404.4852 405.4875 412.6476
rank 1 12 4 13 5 11 10 2 7 6 3 9 8
C17-F5 mean 501.2464 554.7301 539.6017 564.4364 512.703 557.1398 536.9462 522.0381 512.825 530.977 548.0728 525.6662 525.7627
best 500.9951 541.5438 525.3512 551.2702 508.2545 539.3227 521.9911 510.8276 508.4225 525.7325 543.4038 510.6874 522.1256
worst 501.9917 562.7056 556.257 577.8185 517.7245 584.2697 567.3886 533.8411 519.724 534.6331 557.7146 546.6921 531.3457
std 0.540776 10.53806 17.74322 16.11171 5.423907 21.90443 23.23182 10.3802 5.314383 4.281877 7.152264 18.18017 4.645014
median 500.9993 557.3354 538.3993 564.3285 512.4164 552.4834 529.2026 521.7418 511.5768 531.7711 545.5865 522.6426 524.7898
rank 1 11 9 13 2 12 8 4 3 7 10 5 6
C17-F6 mean 600 628.1172 615.1576 635.431 601.1785 621.6683 620.2268 602.0072 601.1205 606.0926 615.0587 606.5844 609.0379
best 600 624.1437 614.3677 632.6039 600.7017 613.1533 606.6099 600.5106 600.6181 604.2107 602.6271 601.2733 606.0714
worst 600 632.1329 617.3273 639.0601 602.3672 635.1389 639.2844 604.0274 601.5891 609.0813 631.4329 616.984 612.8624
std 0 3.743769 1.575387 3.181093 0.864759 10.29375 14.95242 1.717729 0.458809 2.412521 14.53307 7.76462 3.27032
median 600 628.0961 614.4676 635.0299 600.8225 619.1905 617.5064 601.7454 601.1374 605.5392 613.0873 604.0401 608.609
rank 1 12 9 13 3 11 10 4 2 5 8 6 7
C17-F7 mean 711.1267 786.7696 759.9427 793.5837 724.4666 814.493 756.9305 729.8769 725.6592 748.2351 717.9475 731.4933 735.0744
best 710.6726 772.6067 741.6925 782.6387 720.3138 780.2592 746.903 717.8787 717.7416 744.8348 715.8297 725.1484 725.9664
worst 711.7995 796.765 783.5109 804.6758 728.8251 850.564 782.3197 747.11 741.377 755.3906 721.2986 741.6302 739.1596
std 0.557384 11.05161 21.09388 11.22471 3.89965 33.21785 18.51036 13.41155 11.73144 5.310127 2.641472 8.015211 6.79059
median 711.0174 788.8534 757.2838 793.5102 724.3638 813.5744 749.2497 727.2596 721.7591 746.3575 717.331 729.5974 737.5857
rank 1 11 10 12 3 13 9 5 4 8 2 6 7
C17-F8 mean 801.4928 842.6739 828.5432 848.1225 812.5351 843.4306 833.0884 811.8088 815.2945 834.2569 818.779 821.2983 816.1124
best 800.995 838.1575 818.6788 838.3745 808.7549 829.3668 817.8831 808.206 810.2093 828.4819 812.1894 815.3777 812.8734
worst 801.9912 847.7998 842.4782 852.205 814.6617 859.7064 843.6564 815.4968 819.8403 840.725 825.0554 827.1608 822.4095
std 0.625636 5.545568 10.87967 7.138078 2.962099 14.70256 12.09117 3.247739 4.406927 7.021296 6.025675 6.451529 4.653363
median 801.4926 842.3692 826.5079 850.9554 813.3619 842.3245 835.4072 811.7662 815.5642 833.9103 818.9357 821.3274 814.5833
rank 1 11 8 13 3 12 9 2 4 10 6 7 5
C17-F9 mean 900 1353.7 1150.517 1392.659 905.134 1317.56 1312.862 901.3205 910.9771 910.8839 900.6254 904.305 905.059
best 900 1221.615 946.6395 1309.138 900.3235 1133.13 1051.687 900.1139 900.5366 907.8785 900.0394 900.8912 903.0891
worst 900 1475.045 1561.802 1512.884 913.1785 1566.988 1556.076 903.3636 930.3434 917.5471 901.6052 910.8806 907.9139
std 0 119.594 310.193 94.4051 6.297156 204.4421 230.9694 1.659842 15.1837 4.893863 0.767032 4.871949 2.216612
median 900 1359.07 1046.813 1374.307 903.517 1285.061 1321.842 900.9022 906.5142 909.0551 900.4284 902.7241 904.6165
rank 1 12 9 13 6 11 10 3 8 7 2 4 5
C17-F10 mean 1006.179 2181.096 1729.586 2417.519 1505.229 1948.592 1942.061 1732.136 1684.558 2068.376 2159.534 1874.018 1676.188
best 1000.284 1921.987 1462.046 2268.381 1382.756 1720.911 1445.208 1441.456 1509.563 1717.81 1916.982 1528.099 1415.382
worst 1012.668 2300.117 2273.835 2734.951 1578.549 2151.824 2401.429 2171.491 1922.565 2324.822 2258.83 2231.734 2024.674
std 7.244311 192.7589 408.7834 235.1122 100.3704 255.5173 495.8664 379.7598 188.8268 281.6863 176.5855 314.8046 282.3401
median 1005.882 2251.141 1591.231 2333.372 1529.806 1960.816 1960.804 1657.799 1653.051 2115.435 2231.162 1868.12 1632.348
rank 1 12 5 13 2 9 8 6 4 10 11 7 3
C17-F11 mean 1100 3101.99 1144.84 3578.148 1126.427 4844.162 1146.945 1126.823 1150.648 1146.906 1136.85 1140.57 2203.963
best 1100 2031.676 1121.626 1410.344 1112.898 4715.435 1118.117 1107.382 1120.125 1135.086 1123.853 1129.361 1119.906
worst 1100 4144.434 1188.913 5717.17 1157.436 4912.302 1165.353 1143.543 1217.154 1163.618 1160.564 1162.792 5289.488
std 0 1033.315 33.04664 2107.652 22.88817 95.80871 23.58632 18.64388 49.2607 13.17059 17.71381 16.44602 2239.144
median 1100 3115.925 1134.41 3592.539 1117.687 4874.455 1152.156 1128.182 1132.656 1144.46 1131.492 1135.064 1203.23
rank 1 11 6 12 2 13 8 3 9 7 4 5 10
C17-F12 mean 1352.959 3.04E+08 1,014,691 6.07E+08 55,6081.8 962,283.6 2,093,142 953,191.8 1,285,489 4,414,980 945,683.3 74,718.57 588,303.7
best 1318.646 68,431,780 396,241.9 1.35E+08 19,486.36 466,272.3 220,440.9 80,269.96 41,489.41 1,236,043 498,216.7 11,672.08 240,713.7
worst 1438.176 5.31E+08 1,719,649 1.06E+09 870,237 1,186,611 3,466,069 2,783,658 2,012,132 7,801,921 1,487,109 118,000.4 991,573.3
std 62.35801 2.55E+08 689,369.2 5.1E+08 407,890 368,442.3 1,616,452 1,348,855 945,244.5 3,753,489 457,630 49,610.7 344,419.3
median 1327.506 3.09E+08 971,435.4 6.16E+08 667,302 1098,125 2,343,029 474,419.4 1,544,168 4,310,979 898,703.8 84,600.92 560,463.9
rank 1 12 8 13 3 7 10 6 9 11 5 2 4
C17-F13 mean 1305.324 14,793,370 16,446.49 29,577,769 5350.291 11,633.32 7195.222 6463.604 9535.39 15,064.64 9339.47 6371.288 47,520.14
best 1303.114 1,233,731 3162.283 2,456,038 3671.563 7329.324 3624.201 2012.063 6068.856 14,058.19 4950.777 2866.249 8151.738
worst 1308.508 49,102,055 27,494.33 98,191,200 6537.327 17,832.22 13,645.16 11,451.69 13,197.34 17,150.1 13,023.45 15,181.42 15,5719
std 2.473462 24,946,024 13,820.39 49,889,389 1487.51 4917.991 4963.144 5371.09 3183.327 1533.341 3671.92 6442.862 78,543.6
median 1304.837 4,418,847 17,564.68 8,831,920 5596.137 10,685.86 5755.762 6195.332 9437.683 14,525.13 9691.829 3718.742 13,104.94
rank 1 12 10 13 2 8 5 4 7 9 6 3 11
C17-F14 mean 1400.746 3537.165 2000.121 4863.875 1929.741 3175.526 1567.073 1612.61 2279.672 1628.918 5052.126 2838.871 11,422.2
best 1400 2917.026 1698.168 4293.595 1434.361 1481.885 1482.685 1426.054 1466.642 1506.182 4199.684 1432.2 3408.166
worst 1400.995 4533.216 2636.156 6138.936 2874.521 5007.289 1705.952 2090.877 4648.74 1770.088 6879.61 6156.929 22,446.14
std 0.541408 769.4616 466.7728 942.5869 735.1115 2005.623 104.9446 348.6518 1719.029 120.5646 1372.454 2439.604 8753.404
median 1400.995 3349.208 1833.079 4511.485 1705.042 3106.466 1539.828 1466.754 1501.653 1619.702 4564.605 1883.177 9917.238
rank 1 10 6 11 5 9 2 3 7 4 12 8 13
C17-F15 mean 1500.331 9291.205 5066.766 12,452.89 3928.049 6534.761 5859.352 1831.798 5511.379 1975.935 21,070.59 8252.547 4422.54
best 1500.001 3298.851 2198.906 2860.359 3190.009 2503.361 2217.57 1728.182 3488.756 1843.486 10,151.05 2955.741 2241.563
worst 1500.5 15,478.21 11,357.34 26,628.87 4826.524 11,218.82 12,194.46 1938.978 6425.035 2050.737 31,372.95 13,354.66 7407.664
std 0.256213 5737.638 4611.449 11,314.8 738.847 4057.645 4744.95 94.03401 1499.643 101.8412 10,985.2 4717.115 2809.182
median 1500.413 9193.879 3355.407 10,161.17 3847.831 6208.432 4512.689 1830.016 6065.863 2004.758 21,379.17 8349.895 4020.466
rank 1 11 6 12 4 9 8 2 7 3 13 10 5
C17-F16 mean 1600.76 1956.927 1790.531 1968.643 1682.603 1995.231 1911.866 1796.276 1720.719 1676.29 2017.507 1888.754 1784.315
best 1600.356 1899.128 1650.114 1802.593 1640.957 1830.958 1751.897 1713.956 1618.636 1655.686 1903.889 1801.282 1715.952
worst 1601.12 2058.375 1885.918 2204.09 1712.608 2153.805 2017.206 1853.043 1807.866 1726.683 2188.933 2028.071 1812.82
std 0.343807 77.00688 108.6182 184.7761 33.54393 159.3833 139.0817 64.0361 84.9012 37.02768 140.3106 112.9385 49.86364
median 1600.781 1935.103 1813.047 1933.945 1688.423 1998.08 1939.18 1809.054 1728.188 1661.396 1988.604 1862.831 1804.244
rank 1 10 6 11 3 12 9 7 4 2 13 8 5
C17-F17 mean 1700.099 1809.53 1748.189 1806.239 1735.059 1792.301 1826.501 1827.26 1763.306 1754.568 1830.699 1749.382 1752.501
best 1700.02 1793.174 1732.49 1796.351 1721.495 1777.798 1766.075 1770.48 1723.924 1744.182 1743.916 1742.235 1748.199
worst 1700.332 1819.041 1784.458 1812.531 1773.486 1800.078 1872.055 1924.708 1856.768 1765.263 1944.2 1755.838 1758.536
std 0.168864 12.33483 26.48996 7.632948 27.89407 10.77603 49.38603 79.30684 68.11292 11.30402 110.1293 6.920241 4.861874
median 1700.022 1812.953 1737.905 1808.038 1722.628 1795.665 1833.938 1806.927 1736.266 1754.414 1817.34 1749.728 1751.634
rank 1 10 3 9 2 8 11 12 7 6 13 4 5
C17-F18 mean 1805.36 2,456,562 11,541.03 4,895,611 10,847.99 11,714.98 21,376.33 19,348.63 18,454.43 26,699.35 9699.424 20,146.85 12,363.66
best 1800.003 128,322.8 5943.256 244,067.4 4107.461 8195.069 6640.072 8574.872 5967.329 21,142.43 6592.158 4256.342 4733.467
worst 1820.451 7,116,657 15,404.74 14,209,754 16,196.96 14,526.12 31,980.65 30,964.52 30,634.13 32,797.95 11,966.24 36,094.26 17,883.82
std 10.95197 3,522,742 4423.846 7,042,499 5983.7 2856.445 13,538.96 11,110.68 13,611.52 5737.733 2540.637 18,444.41 6095.706
median 1800.492 1,290,633 12,408.07 2,564,312 11,543.77 12,069.36 23,442.29 18,927.56 18,608.14 26,428.51 10,119.65 20,118.4 13,418.68
rank 1 12 4 13 3 5 10 8 7 11 2 9 6
C17-F19 mean 1900.445 333,554.7 6471.06 605,336 5517.557 108,525 30,605.59 2353.324 5333.283 4743.012 35,431.25 22,136.66 6019.454
best 1900.039 22,357.55 2187.576 39,716.99 2308.741 2080.283 6943.315 1957.954 2082.111 2211.714 10,526.97 2618.255 2890.56
worst 1901.559 701,682.7 12,365.65 1,299,174 9251.813 216,523.7 55,721.2 2809.084 12,850.83 11,045.82 50,727.43 67,203.92 9652.432
std 0.810364 323,164.3 5110.522 618,250.1 3851.325 133,408.8 21,755.74 467.5256 5493.958 4585.206 19,767.59 33,107.07 3050.353
median 1900.09 305,089.2 5665.506 541,226.6 5254.838 107,747.9 29,878.93 2323.129 3200.098 2857.258 40,235.29 9362.235 5767.412
rank 1 12 7 13 5 11 9 2 4 3 10 8 6
C17-F20 mean 2000.312 2195.65 2157.506 2202.571 2090.307 2189.132 2188.459 2130.878 2156.952 2072.851 2228.919 2156.148 2054.136
best 2000.312 2151.12 2041.552 2151.909 2071.162 2101.769 2099.1 2050.91 2121.121 2061.048 2171.882 2135.012 2041.352
worst 2000.312 2250.869 2261.632 2253.811 2120.147 2284.313 2255.949 2221.207 2225.944 2081.388 2312.523 2181.17 2059.917
std 0 44.83411 108.1238 53.54076 22.84341 83.61951 82.41672 75.96454 51.25916 10.0526 74.5843 23.99981 9.348874
median 2000.312 2190.305 2163.42 2202.282 2084.959 2185.224 2199.393 2125.698 2140.371 2074.485 2215.636 2154.205 2057.638
rank 1 11 8 12 4 10 9 5 7 3 13 6 2
C17-F21 mean 2200 2285.515 2218.687 2264.516 2255.984 2314.411 2301.249 2252.5 2304.203 2292.508 2351.495 2308.934 2291.201
best 2200 2245.804 2210.67 2227.49 2253.548 2224.984 2222.545 2206.529 2300.289 2210.095 2336.176 2301.709 2229.95
worst 2200 2310.048 2240.432 2285.317 2258.467 2354.854 2338.939 2299.234 2308.777 2325.466 2366.304 2315.505 2320.685
std 0 31.96962 15.80852 27.93412 2.265614 66.04131 57.78516 57.40188 3.79845 60.19259 13.68159 7.42458 44.98868
median 2200 2293.103 2211.824 2272.629 2255.961 2338.903 2321.756 2252.119 2303.872 2317.235 2351.751 2309.262 2307.086
rank 1 6 2 5 4 12 9 3 10 8 13 11 7
C17-F22 mean 2300.073 2642.8 2308.325 2830.323 2304.903 2656.585 2321.07 2288.364 2307.996 2317.434 2300.603 2312.013 2316.02
best 2300 2540.302 2304.87 2650.497 2300.924 2428.398 2317.164 2239.419 2301.202 2311.909 2300.113 2300.661 2313.04
worst 2300.29 2745.079 2309.73 2962.713 2309.169 2835.901 2327.16 2305.128 2320.393 2328.049 2301.117 2339.816 2319.724
std 0.157893 98.44184 2.533489 143.0457 3.781106 197.8878 4.924207 35.51645 9.483233 8.127414 0.457965 20.24666 3.028103
median 2300 2642.909 2309.351 2854.041 2304.759 2681.021 2319.979 2304.455 2305.195 2314.89 2300.591 2303.787 2315.658
rank 2 11 6 13 4 12 10 1 5 9 3 7 8
C17-F23 mean 2600.919 2678.961 2638.02 2688.432 2614.073 2708.104 2643.747 2619.19 2613.571 2638.43 2767.027 2639.931 2650.15
best 2600.003 2649.146 2627.825 2663.205 2611.722 2631.522 2628.648 2608.07 2608.201 2629.366 2711.138 2633.477 2633.265
worst 2602.87 2696.413 2653.633 2723.717 2616.706 2746.175 2660.892 2629.469 2619.663 2646.197 2886.071 2649.994 2657.13
std 1.436922 24.18562 13.10548 30.6669 2.58295 56.43704 18.97113 10.1202 6.4156 8.229169 89.55711 8.02611 12.41382
median 2600.403 2685.143 2635.312 2683.402 2613.933 2727.36 2642.724 2619.611 2613.21 2639.078 2735.45 2638.126 2655.102
rank 1 10 5 11 3 12 8 4 2 6 13 7 9
C17-F24 mean 2630.488 2765.185 2748.659 2819.559 2630.65 2663.079 2742.631 2676.028 2732.435 2738.514 2731.304 2746.897 2710.324
best 2516.677 2724.904 2719.254 2798.418 2614.759 2542.972 2716.154 2515.409 2707.696 2724.242 2519.335 2738.729 2553.544
worst 2732.32 2827.028 2766.535 2875.219 2639.513 2789.346 2771.83 2744.133 2744.878 2750.265 2863.426 2767.252 2788.555
std 126.7883 51.22319 23.88559 40.45843 12.12815 144.3216 25.01576 117.2769 18.93341 13.46482 161.0712 14.8092 115.5007
median 2636.477 2754.404 2754.423 2802.3 2634.163 2660 2741.269 2722.285 2738.583 2739.775 2771.229 2740.804 2749.598
rank 1 12 11 13 2 3 9 4 7 8 6 10 5
C17-F25 mean 2932.639 3107.152 2914.391 3227.178 2918.186 3103.915 2909.269 2921.806 2936.094 2931.645 2921.953 2922.869 2947.757
best 2898.047 3046.034 2901.119 3168.947 2914.345 2908.676 2786.075 2903.552 2920.869 2915.763 2904.944 2900.751 2934.789
worst 2945.793 3242.562 2945.862 3291.747 2923.751 3554.229 2952.81 2941.28 2943.151 2948.071 2940.397 2942.787 2957.685
std 25.12878 100.3049 22.93345 55.32727 4.509969 330.2856 89.45057 22.78116 11.16775 19.53837 20.8472 25.00614 10.61883
median 2943.359 3070.007 2905.292 3224.008 2917.324 2976.378 2949.096 2921.197 2940.178 2931.373 2921.235 2923.969 2949.278
rank 8 12 2 13 3 11 1 4 9 7 5 6 10
C17-F26 mean 2900 3479.492 2982.128 3650.998 3009.527 3534.254 3157.14 2913.469 3228.037 3177.481 3741.746 2916.838 2910.943
best 2900 3232.365 2823.293 3405.694 2892.266 3109.432 2970.468 2899.224 2958.692 2913.788 2823.292 2866.913 2733.158
worst 2900 3657.094 3168.251 3931.414 3286.061 4083.718 3496.999 2947.122 3814.643 3787.575 4195.301 2993.158 3084.441
std 4.04E−13 205.1181 200.8003 250.5073 201.5685 505.4077 257.8276 24.52868 429.3952 445.1069 680.2302 58.49097 181.6943
median 2900 3514.255 2968.485 3633.443 2929.891 3471.932 3080.547 2903.764 3069.407 3004.281 3974.196 2903.641 2913.088
rank 1 10 5 12 6 11 7 3 9 8 13 4 2
C17-F27 mean 3089.518 3195.072 3117.592 3213.317 3104.402 3168.87 3182.133 3093.149 3114.239 3113.362 3208.927 3131.437 3152.052
best 3089.518 3152.328 3095.515 3122.317 3092.192 3101.651 3171.92 3090.086 3094.081 3095.582 3197.261 3096.371 3115.537
worst 3089.518 3264.333 3173.552 3377.978 3132.966 3204.083 3190.778 3094.976 3169.983 3160.563 3226.007 3175.68 3202.016
std 2.86E−13 52.47827 40.68596 122.7136 20.87492 51.55462 8.446094 2.494371 40.49244 34.32791 13.22445 36.38001 39.34622
median 3089.518 3181.814 3100.652 3176.487 3096.226 3184.874 3182.916 3093.767 3096.446 3098.651 3206.22 3126.849 3145.328
rank 1 11 6 13 3 9 10 2 5 4 12 7 8
C17-F28 mean 3100 3538.244 3231.255 3698.548 3216.142 3532.542 3274.874 3233.509 3324.896 3307.813 3415.932 3291.101 3240.069
best 3100 3501.806 3114.813 3628.394 3165.576 3383.853 3162.006 3108.094 3189.461 3215.18 3407.045 3181.161 3146.602
worst 3100 3566.356 3357.793 3752.19 3240.529 3713.207 3365.058 3364.619 3385.592 3364.826 3432.454 3357.978 3470.495
std 0 29.96079 117.1453 60.32794 37.75453 188.0645 111.3176 152.3908 99.02326 75.82069 12.40021 88.80992 168.1178
median 3100 3542.408 3226.208 3706.803 3229.231 3516.553 3286.217 3230.661 3362.265 3325.623 3412.115 3312.633 3171.588
rank 1 12 3 13 2 11 6 4 9 8 10 7 5
C17-F29 mean 3132.241 3319.311 3271.941 3350.056 3201.785 3230.335 3327.388 3201.425 3255.274 3210.003 3324.795 3256.025 3231.194
best 3130.076 3296.748 3203.589 3284.088 3165.3 3167.82 3231.425 3145.081 3188.318 3171.072 3232.237 3166.963 3187.085
worst 3134.841 3338.025 3339.466 3409.497 3242.517 3286.216 3451.911 3275.176 3358.691 3234.574 3575.403 3325.321 3269.021
std 2.701544 18.49857 76.50848 71.09305 36.97102 52.816 100.1385 59.0418 88.90214 30.80604 182.3029 77.94277 38.20256
median 3132.023 3321.236 3272.354 3353.32 3199.661 3233.652 3313.107 3192.721 3237.043 3217.183 3245.769 3265.908 3234.335
rank 1 10 9 13 3 5 12 2 7 4 11 8 6
C17-F30 mean 3418.734 1,986,627 302,228.1 3,202,386 405,175.5 57,6521.7 900,432 309,219.2 852,117 101,430.5 720,781.7 381,593.1 1,359,456
best 3394.682 1,492,625 137,971.4 774,684 15,639.03 169,238 61,831.73 8355.747 30,785.93 27,099.55 580,958.5 8815.27 517,597.5
worst 3442.907 2,767,382 716,581 4,982,029 597,963.4 1,116,490 3,277,457 1,055,327 1,226,511 145,285.1 859,319.6 730,649.2 2,986,435
std 30.22288 599,846.9 301,967 1,923,438 287,816.6 438,153.6 1,725,459 543,107.4 613,998.1 57,560.13 126,804 430,738.3 1,265,501
median 3418.673 1,843,250 177,180.1 3,526,415 503,549.7 510,179.4 131,219.7 86,597.28 1,075,585 116,668.6 721,424.3 393,453.9 966,895.8
rank 1 12 3 13 6 7 10 4 9 2 8 5 11
Sum rank 37 319 178 351 107 287 240 117 189 191 240 184 199
Mean rank 1.275862 11 6.137931 12.10345 3.689655 9.896552 8.275862 4.034483 6.517241 6.586207 8.275862 6.344828 6.862069
Total rank 1 11 4 12 2 10 9 3 6 7 9 5 8

Table 2.

Optimization results of the CEC 2017 test suite (dimension = 30).

GAO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C17-F1 mean 100 2.24E+10 5830.696 3.51E+10 26,029.03 1.53E+10 1.45E+09 462,149.6 1.42E+09 5.27E+09 8,970,393 1.2E+09 1.52E+08
best 100 1.93E+10 1944.399 3.13E+10 11,980.07 9.61E+09 1.15E+09 358,035.1 2.35E+08 3.33E+09 4300.234 4659.294 1.14E+08
worst 100 2.81E+10 8674.084 4.32E+10 39,572.94 2.08E+10 1.8E+09 588,039.2 4.29E+09 7.85E+09 31,306,915 4.79E+09 2.1E+08
std 8.93E−15 4.44E+09 3268.739 5.96E+09 14,512.44 5.72E+09 3.66E+08 123,857.4 2.09E+09 2.06E+09 16,373,797 2.61E+09 45,358,470
median 100 2.12E+10 6352.15 3.3E+10 26,281.55 1.54E+10 1.43E+09 451,262.1 5.87E+08 4.94E+09 2,285,178 2,732,577 1.43E+08
rank 1 12 2 13 3 11 9 4 8 10 5 7 6
C17-F3 mean 300 83,231.63 38,295.6 62,966.84 1080.016 40,427.18 198,100.3 1654.42 35,704.8 29,742.72 81,960.49 27,361.07 142,883.2
best 300 75,990.45 20,886.01 48,763.59 835.6308 38,295.97 163,903.7 1359.797 31,222.91 25,372.64 70,568.25 19,591.81 108,167.1
worst 300 91,401.08 49,468.55 68,418.5 1327.762 42,603.54 227,591 2234.118 39,845.54 32,187.24 90,214.39 35,088.1 198,501.9
std 0 8274.729 13,338.25 10,339.67 240.5065 2328.613 28,830.94 435.0825 3847.771 3343.804 9653.533 7695.205 46,670.58
median 300 82,767.5 41,413.91 67,342.64 1078.334 40,404.6 200,453.3 1511.882 35,875.37 30,705.5 83,529.66 27,382.18 132,431.9
rank 1 11 7 9 2 8 13 3 6 5 10 4 12
C17-F4 mean 458.5616 5575.746 510.5674 8459.244 492.1852 3951.847 802.8511 495.2865 559.4071 846.3066 578.9619 604.0431 764.5042
best 458.5616 3162.415 490.1107 5447.077 481.9965 964.989 746.8999 487.3344 514.4662 669.0919 560.641 511.0539 719.023
worst 458.5616 7521.568 525.685 11,795.17 513.3417 6521.647 870.971 509.3757 584.941 1190.549 598.5419 764.1292 785.5119
std 0 1966.289 16.4318 2867.916 15.6659 2553.534 60.90524 10.60051 33.63155 254.441 17.40204 125.6863 33.99235
median 458.5616 5809.5 513.237 8297.365 486.7013 4160.375 796.7667 492.218 569.1106 762.7929 578.3323 570.4947 776.7408
rank 1 12 4 13 2 11 9 3 5 10 6 7 8
C17-F5 mean 502.4874 804.9869 702.7953 838.5171 581.1528 761.4417 786.479 612.1267 614.2579 741.2772 700.5764 623.3892 683.0927
best 500.995 787.2262 670.5593 815.5432 559.181 736.3111 758.9541 602.1272 582.3474 719.2387 684.4747 605.1798 643.8764
worst 503.9798 820.5739 755.7975 865.0304 603.5573 787.5596 801.0327 639.4914 638.7938 766.5766 722.3585 665.0013 737.5901
std 1.397909 15.42534 41.61819 26.24631 20.23733 25.92504 20.39522 19.87255 30.24951 23.8542 17.75002 30.70363 42.73087
median 502.4874 806.0737 692.4122 836.7474 580.9364 760.9481 792.9647 603.4442 617.9452 739.6468 697.7363 611.6878 675.4521
rank 1 12 8 13 2 10 11 3 4 9 7 5 6
C17-F6 mean 600 668.4481 640.1894 671.1451 603.1735 666.0123 665.3591 621.1771 610.5213 637.3057 648.544 640.3844 626.1082
best 600 667.3664 638.4326 666.4683 601.939 652.8759 656.1085 611.1992 604.3109 631.0881 647.7581 629.852 620.0473
worst 600 669.7374 642.8848 676.7635 604.5364 673.7459 669.9162 631.8469 616.418 647.1292 649.5544 649.4784 630.0802
std 7.14E−14 1.066492 2.110469 5.171545 1.228254 10.61633 6.893277 10.64413 5.433745 7.617645 0.830897 9.48126 4.784344
median 600 668.3442 639.7201 670.6744 603.1092 668.7137 667.7058 620.8312 610.6782 635.5028 648.4318 641.1036 627.1526
rank 1 12 7 13 2 11 10 4 3 6 9 8 5
C17-F7 mean 733.478 1228.995 1099.712 1263.799 843.951 1165.878 1236.662 850.2233 877.2289 1039.196 950.1445 870.9795 946.9537
best 732.8186 1186.202 1007.089 1248.902 817.6154 1039.596 1201.701 801.3773 815.1492 970.212 916.1667 849.6304 909.8194
worst 734.5199 1259.268 1234.888 1290.136 896.3808 1293.007 1302.601 911.4905 908.4492 1103.662 1008.406 892.354 1000.135
std 0.820605 36.18977 110.598 19.99462 38.76962 121.0686 50.70099 51.45941 45.79175 77.02059 45.68643 19.11727 41.38543
median 733.2867 1235.255 1078.436 1258.078 830.9039 1165.454 1221.173 844.0127 892.6586 1041.454 938.0026 870.9668 938.93
rank 1 11 9 13 2 10 12 3 5 8 7 4 6
C17-F8 mean 803.3298 1054.375 939.0289 1086.282 888.6842 1032.224 1007.835 891.0273 889.8869 1001.196 949.1516 916.8257 970.2233
best 801.2023 1042.296 914.1188 1068.901 882.1376 995.1895 958.6942 864.7594 883.8931 984.9519 929.263 906.7325 955.6456
worst 804.1574 1071.703 957.41 1109.377 896.6531 1121.21 1044.586 915.7834 896.691 1030.481 971.32 930.3388 987.7654
std 1.546288 15.01989 21.53442 22.05067 6.526089 65.10001 39.86739 24.5518 5.840703 21.82905 20.35337 11.17469 17.18677
median 803.9798 1051.751 942.2934 1083.424 887.9731 1006.249 1014.029 891.7831 889.4817 994.6756 948.0116 915.1158 968.7411
rank 1 12 6 13 2 11 10 4 3 9 7 5 8
C17-F9 mean 900 9515.324 4272.211 9225.632 1079.736 9962.829 9568.298 4810.704 1927.55 5082.281 3636.606 3182.606 1257.708
best 900 8134.16 3187.446 9011.84 928.9729 6111.314 7340.205 3844.345 1477.303 3695.543 3195.715 1970.943 1094.368
worst 900 10,808.32 4864.822 9356.939 1228.385 13,414.13 11,390.81 7265.409 2581.598 7613.125 4353.529 4753.266 1447.598
std 7.14E−14 1212.907 814.2805 161.866 150.6155 3281.801 2223.351 1786.248 580.2782 1928.028 561.7954 1287.229 184.2518
median 900 9559.408 4518.287 9266.875 1080.793 10,162.93 9771.089 4066.531 1825.65 4510.228 3498.591 3003.108 1244.433
rank 1 11 7 10 2 13 12 8 4 9 6 5 3
C17-F10 mean 2293.267 6711.466 5199.584 7297.233 3948.269 6147.451 6093.07 4512.635 4631.659 7314.039 4682.42 4846.696 5790.657
best 1851.756 6257.175 4542.675 6605.22 3601.53 4997.117 5353.014 4231.179 4212.362 6960.446 4431.502 4657.101 5397.511
worst 2525.027 7003.829 5653.819 7857.574 4375.692 6681.464 7277.149 4817.147 4957.496 7486.531 5057.283 5215.581 6319.118
std 326.8979 348.455 562.337 566.1807 388.8296 843.4916 936.7337 300.4517 340.3693 261.3508 301.6935 272.724 472.6668
median 2398.142 6792.43 5300.922 7363.07 3907.926 6455.611 5871.057 4501.106 4678.389 7404.589 4620.448 4757.052 5723.001
rank 1 11 7 12 2 10 9 3 4 13 5 6 8
C17-F11 mean 1102.987 6588.648 1243.679 7700.281 1168.172 4557.763 6855.893 1291.932 2045.681 1868.273 2647.571 1236.428 8014.356
best 1100.995 5445.541 1190.234 6294.032 1121.752 3286.896 4977.714 1249.106 1356.107 1531.097 2080.833 1210.801 3047.23
worst 1105.977 7524.423 1292.976 8649.705 1200.997 6797.836 10,068.8 1331.2 3882.607 2497.356 3226.279 1262.525 14,907.23
std 2.342568 993.8017 46.63589 1174.213 37.26024 1718.502 2416.292 48.66841 1334.469 466.8468 586.8497 24.95497 5531.35
median 1102.487 6692.315 1245.752 7928.694 1174.97 4073.161 6188.529 1293.712 1472.005 1722.319 2641.587 1236.193 7051.482
rank 1 10 4 12 2 9 11 5 7 6 8 3 13
C17-F12 mean 1744.553 6.02E+09 17,863,386 9.34E+09 21,141.86 4.34E+09 2.12E+08 9,618,730 45,007,811 2.59E+08 1.71E+08 2,197,963 6,585,298
best 1721.81 4.97E+09 2,515,715 8.33E+09 15,112.24 2.24E+09 54,247,868 4,467,693 4,371,684 1.65E+08 32,963,915 240,110 4,560,763
worst 1764.937 7.64E+09 43,624,026 1.18E+10 26,966.2 5.68E+09 4.23E+08 23,269,434 94,380,138 4.49E+08 5.45E+08 4,367,235 8,619,582
std 21.9323 1.24E+09 19,693,155 1.77E+09 5497.114 1.62E+09 1.85E+08 9,919,151 42,706,241 1.4E+08 2.72E+08 1,937,243 2,003,322
median 1745.733 5.73E+09 12,656,901 8.64E+09 21,244.5 4.73E+09 1.85E+08 5,368,897 40,639,712 2.1E+08 52,257,988 2,092,253 6,580,423
rank 1 12 6 13 2 11 9 5 7 10 8 3 4
C17-F13 mean 1315.791 4.89E+09 128,357.7 9.03E+09 1875.226 1.25E+09 774,665.8 78,141.05 646,635.7 75,500,364 31,494.84 27,975.88 10,201,641
best 1314.587 2.38E+09 71,240.8 4.74E+09 1607.384 16,892,010 365,628.3 31,432.53 78,361.26 52,431,398 25,563.03 11,712.82 2,768,082
worst 1318.646 6.85E+09 202,845.2 1.11E+10 2399.919 4.35E+09 1,145,245 156,691.7 2,006,033 1.11E+08 46,031.26 62,954.17 21,943,429
std 2.107258 2.01E+09 59,484.26 3.16E+09 389.8455 2.27E+09 442,347.8 63,996.54 999,080.8 27,735,110 10,663.11 25,672.39 8,943,170
median 1314.967 5.17E+09 119,672.5 1.01E+10 1746.801 3.23E+08 793,895 62,219.97 251,074.4 69,119,457 27,192.53 18,618.27 8,047,527
rank 1 12 6 13 2 11 8 5 7 10 4 3 9
C17-F14 mean 1423.017 1,620,883 232,138.6 1,878,343 1439.96 1,004,611 1,901,641 17,597.69 456,074.8 119,821 978,295.3 16,252.17 1,716,822
best 1422.014 999,618.1 32,641.8 944,177.7 1436.666 718,913.2 30,911.57 4476.323 29,593.77 69,721.47 634,875.7 2922.639 284,338.6
worst 1423.993 2,051,782 537,168.9 2,796,941 1444.619 1,419,165 5,808,995 29,816.42 977,253.7 137,833.3 1,476,990 29,507.03 2,894,290
std 0.87954 535,959.6 242,266.2 969,969.9 3.964006 349,745.9 2,887,685 11,878.97 523,579.8 36,363.11 431,297.5 12,638.36 1,310,027
median 1423.03 1,716,065 179,371.8 1,886,126 1439.277 940,183.2 883,327.9 18,049.02 408,725.8 135,864.6 900,657.9 16,289.51 1,844,330
rank 1 10 6 12 2 9 13 4 7 5 8 3 11
C17-F15 mean 1503.129 2.6E+08 32,238.74 5.11E+08 1615.842 12,285,162 4,311,392 36,795.69 13,526,091 4,387,752 13,965.85 4316.719 816,946.7
best 1502.462 2.25E+08 9568.865 4.41E+08 1579.303 4,839,717 198,819.8 21,398.4 84,202.47 996,467.3 9982.633 1863.552 150,141
worst 1504.265 2.88E+08 52,213.63 5.64E+08 1632.203 28,577,478 13,998,112 60,719.59 50,643,212 8,259,350 18,859.25 7827.492 1,830,094
std 0.931104 33,963,783 19,599.84 65,714,951 26.71831 11,924,974 7,123,977 18,547.3 26,943,033 3,240,985 4038.215 2873.981 836,631.2
median 1502.893 2.64E+08 33,586.24 5.19E+08 1625.931 7,861,726 1,524,317 32,532.39 1,688,475 4,147,596 13,510.76 3787.916 643,775.8
rank 1 12 5 13 2 10 8 6 11 9 4 3 7
C17-F16 mean 1663.469 3976.13 2850.193 4538.035 2018.075 3081.824 3912.824 2497.509 2459.731 3246.375 3418.88 2790.369 2806.553
best 1614.72 3677.136 2498.276 3857.04 1729.78 2684.641 3280.597 2281.547 2296.23 3046.042 3224.039 2566.73 2476.202
worst 1744.118 4228.361 3313.751 5153.785 2265.618 3317.831 4670.899 2689.547 2594.452 3477.372 3554.178 3046.454 3136.355
std 67.44425 260.6856 370.1947 729.5955 262.3233 301.4003 627.3598 194.6654 161.2045 207.3804 160.5896 243.2084 346.6029
median 1647.519 3999.511 2794.373 4570.657 2038.452 3162.412 3849.901 2509.47 2474.121 3231.043 3448.651 2774.146 2806.828
rank 1 12 7 13 2 8 11 4 3 9 10 5 6
C17-F17 mean 1728.099 3184.02 2385.059 3444.454 1861.554 3068.849 2705.694 2048.793 1922.204 2146.088 2427.883 2266.784 2113.355
best 1718.761 2670.362 2263.79 3120.014 1753.291 2170.082 2296.654 1992.226 1798.016 1954.46 2328.457 2067.577 2068.723
worst 1733.659 3809.326 2471.165 4025.836 1921.879 5414.867 2971.642 2181.755 2057.325 2387.679 2561.329 2612.166 2177.383
std 7.30039 526.9921 100.2765 449.8941 80.94562 1704.675 316.43 97.00013 131.8202 199.0191 120.9462 266.3502 53.95218
median 1729.987 3128.196 2402.64 3315.983 1885.523 2345.223 2777.24 2010.594 1916.738 2121.107 2410.873 2193.697 2103.656
rank 1 12 8 13 2 11 10 4 3 6 9 7 5
C17-F18 mean 1825.696 24,287,534 2,263,992 27,925,543 1895.059 31,053,715 5,043,241 547,132.2 358,761.7 1,423,873 440,293.8 117,519 3,115,606
best 1822.524 6,996,614 241,331.5 9,028,538 1873.011 1,138,972 1,699,708 137,877.9 67,292.89 661,159.2 246,961.1 83,697.64 2,432,402
worst 1828.42 47,167,452 4,516,915 54,862,462 1907.868 58,848,115 10,408,932 1,480,690 921,379.6 1,790,003 857,003.1 139,389 4,566,779
std 2.940513 19,326,659 2,180,757 21,151,997 17.03125 34,876,427 4,073,042 681,637.6 437,442.1 564,848.5 306,279.1 26,498.85 1,064,963
median 1825.92 21,493,035 2,148,860 23,905,585 1899.679 32,113,887 4,032,162 284,980.2 223,187.3 1,622,165 328,605.4 123,494.6 2,731,622
rank 1 11 8 12 2 13 10 6 4 7 5 3 9
C17-F19 mean 1910.989 4.96E+08 58,126.47 8.37E+08 1923.509 2.52E+08 12,243,666 803,041 3,446,841 4,915,042 70,150.44 38,301.8 1,385,589
best 1908.84 3.71E+08 12,610.39 6.04E+08 1920.961 3,125,025 1,593,445 20,530.54 60,786.57 2,551,343 38,175.1 7765.051 547,648.4
worst 1913.095 6.46E+08 129,139.1 1.27E+09 1928.282 6.97E+08 21,141,224 1,805,173 11,114,255 6,986,559 94,307.98 114,161.1 2,461,289
std 2.10261 1.5E+08 55,242.46 3.2E+08 3.557655 3.49E+08 9,701,357 945,184 5,600,908 2,374,247 25,431.89 55,229.08 878,355.7
median 1911.01 4.84E+08 45,378.18 7.37E+08 1922.396 1.53E+08 13,119,997 693,230.5 1,306,161 5,061,133 74,059.34 15,640.51 1,266,709
rank 1 12 4 13 2 11 10 6 8 9 5 3 7
C17-F20 mean 2065.787 2796.248 2569.721 2842.618 2174.505 2754.131 2743.498 2543.502 2345.481 2709.577 2891.383 2493.68 2431.832
best 2029.521 2717.077 2435.499 2688.781 2060.52 2632.945 2579.927 2330.185 2181.405 2644.37 2572.029 2447.954 2375.804
worst 2161.126 2880.76 2758.187 2923.577 2263.092 2870.725 2902.416 2905.285 2492.129 2815.418 3316.121 2610.098 2471.322
std 69.26656 72.88532 151.0366 116.0351 92.04375 106.7938 148.3052 272.6655 138.6492 86.75523 340.1559 84.99863 44.58253
median 2036.25 2793.577 2542.599 2879.058 2187.204 2756.427 2745.823 2469.269 2354.195 2689.26 2838.691 2458.335 2440.101
rank 1 11 7 12 2 10 9 6 3 8 13 5 4
C17-F21 mean 2308.456 2586.112 2429.733 2635.523 2365.407 2510.732 2575.654 2398.876 2385.776 2476.648 2541.079 2424.19 2474.167
best 2304.034 2503.828 2239.133 2566.699 2355.832 2313.975 2511.033 2367.311 2357.335 2464.956 2524.504 2406.825 2444.909
worst 2312.987 2639.649 2565.011 2717.666 2381.228 2626.13 2631.429 2423.678 2398.434 2485.83 2571.965 2437.464 2519.797
std 4.852783 70.34927 149.177 71.48777 12.14978 150.3418 65.13148 25.54739 21.14649 11.60673 22.98087 15.86086 34.85109
median 2308.402 2600.486 2457.394 2628.864 2362.283 2551.411 2580.077 2402.257 2393.667 2477.902 2533.924 2426.235 2465.981
rank 1 12 6 13 2 9 11 4 3 8 10 5 7
C17-F22 mean 2300 7197.735 5291.965 6988.536 2302.872 7878.421 6699.701 3725.871 2648.451 5216.932 5770.482 4527.268 2646.874
best 2300 6905.286 2302.895 6100.795 2301.873 7679.199 5875.195 2305.955 2536.943 2665.425 3766.123 2436.13 2582.523
worst 2300 7653.951 6446.791 7880.646 2304.558 7972.315 7435.194 5489.079 2877.381 8045.799 6651.321 6550.838 2696.642
std 0 348.1898 2172.161 832.4763 1.310487 149.9847 705.559 1809.434 169.3872 3188.216 1463.762 2059.341 61.57958
median 2300 7115.851 6209.087 6986.352 2302.528 7931.085 6744.208 3554.226 2589.739 5078.252 6332.241 4561.053 2654.166
rank 1 12 8 11 2 13 10 5 4 7 9 6 3
C17-F23 mean 2655.081 3119.093 2889.696 3166.646 2646.19 3123.314 2993.881 2725.509 2737.411 2869.741 3618.178 2866.813 2931.68
best 2653.745 3052.69 2774.059 3125.186 2474.16 3028.342 2848.34 2694.373 2710.109 2830.903 3532.397 2816.976 2885.392
worst 2657.377 3197.28 3047.49 3213.919 2711.793 3301.686 3087.77 2740.845 2761.013 2920.587 3703.143 2919.204 2994.691
std 1.79918 69.32291 126.5441 41.69167 125.1344 132.9871 111.362 23.13598 24.97449 41.08474 98.87545 47.85622 49.70222
median 2654.6 3113.202 2868.617 3163.74 2699.404 3081.615 3019.707 2733.409 2739.261 2863.737 3618.585 2865.536 2923.318
rank 2 10 7 12 1 11 9 3 4 6 13 5 8
C17-F24 mean 2831.409 3257.436 3132.252 3344.225 2882.957 3227.736 3085.012 2902.245 2915.402 3020.71 3299.939 3097.741 3180.377
best 2829.992 3222.637 3012.473 3264.802 2867.506 3133.14 3030.05 2861.253 2905.338 2998.261 3265.898 3029.904 3098.613
worst 2832.366 3326.504 3265.163 3479.85 2889.738 3273.031 3108.048 2920.182 2922.286 3053.136 3333.143 3197.142 3247.25
std 1.246718 50.93461 120.9993 107.6055 11.36076 70.91674 40.20797 29.98429 8.273703 25.17521 32.17397 77.64043 75.42338
median 2831.64 3240.301 3125.686 3316.123 2887.292 3252.387 3100.975 2913.773 2916.991 3015.721 3300.357 3081.959 3187.823
rank 1 11 8 13 2 10 6 3 4 5 12 7 9
C17-F25 mean 2886.698 3800.088 2906.312 4342.239 2891.222 3392.322 3056.359 2907.023 2979.636 3050.164 2981.487 2894.406 3078.72
best 2886.691 3473.964 2893.165 3818.698 2884.561 3063.681 3023.9 2886.114 2945.826 2945.791 2970.645 2887.224 3063.826
worst 2886.707 4043.769 2939.912 5039.77 2897.338 3732.374 3073.082 2961.847 3041.478 3168.502 2993.113 2910.1 3089.885
std 0.008278 258.9364 24.42658 553.4353 6.284407 355.6964 25.12833 39.88302 48.18031 116.3059 10.12724 11.48927 12.25239
median 2886.698 3841.309 2896.085 4255.243 2891.495 3386.617 3064.226 2890.065 2965.62 3043.182 2981.095 2890.151 3080.585
rank 1 12 4 13 2 11 9 5 6 8 7 3 10
C17-F26 mean 3578.65 8348.562 6747.9 8857.441 2959.894 7963.37 7654.154 4548.82 4356.689 5532.353 6873.735 4601.941 4208.71
best 3559.841 7978.641 5633.769 8131.148 2958.088 7389.984 7017.352 4248.451 4014.143 4334.846 5962.246 3474.557 3875.117
worst 3607.686 9012.359 7403.174 10,142.89 2962.551 8325.199 8394.322 5096.284 4887.213 6669.677 7348.178 5942.959 4617.04
std 24.78775 524.3091 846.9994 1027.892 2.329347 436.4335 615.4601 428.6104 405.4909 1164.857 703.2545 1254.391 338.6951
median 3573.536 8201.625 6977.328 8577.864 2959.47 8069.148 7602.471 4425.273 4262.7 5562.445 7092.259 4495.123 4171.342
rank 2 12 8 13 1 11 10 5 4 7 9 6 3
C17-F27 mean 3207.018 3557.859 3336.614 3692.551 3214.516 3439.143 3399.203 3229.081 3245.065 3304.138 4738.265 3270.064 3427.096
best 3200.749 3504.742 3259.845 3447.597 3200.701 3325.41 3252.487 3213.263 3239.732 3239.46 4345.466 3234.937 3360.528
worst 3210.656 3647.653 3401.068 3944.515 3234.537 3654.379 3507.364 3250.664 3256.4 3367.534 5025.606 3307.487 3464.856
std 5.058229 69.40237 81.40933 231.9974 16.86964 160.4216 118.7568 17.15178 8.322647 57.63497 362.1397 33.46625 49.7926
median 3208.335 3539.521 3342.771 3689.047 3211.413 3388.391 3418.481 3226.198 3242.063 3304.78 4790.994 3268.916 3441.501
rank 1 11 7 12 2 10 8 3 4 6 13 5 9
C17-F28 mean 3100 4571.047 3257.514 5360.196 3212.502 4031.57 3407.388 3249.529 3545.039 3607.884 3479.289 3312.468 3532.676
best 3100 4364.764 3228.668 5089.878 3196.105 3546.402 3354.006 3217.768 3371.526 3476.923 3416.993 3195.173 3485.352
worst 3100 4796.882 3289.077 5645.616 3242.413 4524.153 3454.018 3276.914 3966.099 3904.816 3607.994 3495.259 3585.531
std 2.86E−13 201.1901 26.93721 288.6574 22.52248 493.922 48.42336 26.91766 307.589 218.2223 94.7696 151.3715 51.32503
median 3100 4561.271 3256.155 5352.645 3205.744 4027.863 3410.765 3251.717 3421.266 3524.899 3446.085 3279.72 3529.911
rank 1 12 4 13 2 11 6 3 9 10 7 5 8
C17-F29 mean 3353.75 5165.165 4238.483 5356.041 3653.907 5027.779 4894.057 3814.832 3769.346 4394.082 4873.204 4097.12 4200.257
best 3325.385 4781.032 3925.131 4815.572 3502.249 4549.384 4640.711 3697.589 3678.852 4101.821 4617.358 3940.75 3860.919
worst 3370.797 5597.427 4432.861 6103.185 3791.683 5814.268 5060.487 3902.269 3867.5 4822.173 5105.334 4318.126 4492.071
std 21.42746 430.9386 247.3722 699.807 139.048 639.3948 194.8489 97.52882 87.40834 336.9599 272.1672 172.6724 311.0435
median 3359.41 5141.101 4297.97 5252.703 3660.848 4873.732 4937.515 3829.735 3765.517 4326.167 4885.062 4064.802 4224.02
rank 1 12 7 13 2 11 10 4 3 8 9 5 6
C17-F30 mean 5007.854 1.23E+09 1,226,561 2.43E+09 7628.457 33,024,519 33,699,582 2,659,152 5,482,512 32,533,736 1,945,470 235,225.1 604,275.2
best 4955.449 9.06E+08 433,022.5 1.74E+09 6346.969 11,291,100 6,721,212 478,549.6 1,223,756 17,415,442 1,698,234 7391.654 167,926.1
worst 5086.396 1.35E+09 2,171,246 2.68E+09 10,132.67 77,162,996 54,000,073 3,806,634 14,803,056 68,241,237 2,340,871 887,651.6 1,155,344
std 64.18196 2.36E+08 790,932.4 4.97E+08 1930.5 32,540,981 21,448,199 1,615,422 6,825,432 26,053,037 301,100 473,587.2 523,179.4
median 4994.785 1.33E+09 1,150,987 2.64E+09 7017.094 21,821,990 37,038,521 3,175,713 2,951,619 22,239,133 1,871,388 22,928.54 546,915.6
rank 1 12 5 13 2 10 11 7 8 9 6 3 4
Sum rank 31 334 182 361 57 305 284 128 151 232 231 139 204
Mean rank 1.068966 11.51724 6.275862 12.44828 1.965517 10.51724 9.793103 4.413793 5.206897 8 7.965517 4.793103 7.034483
Total rank 1 12 6 13 2 11 10 3 5 9 8 4 7

Table 3.

Optimization results of the CEC 2017 test suite (dimension = 50).

GAO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C17-F1 mean 100 5.09E+10 8,540,548 7.98E+10 5,463,321 3.24E+10 6.56E+09 4,128,914 7.97E+09 1.77E+10 1.46E+10 2.16E+09 8.86E+09
best 100 4.55E+10 1,215,225 6.98E+10 2,108,552 2.99E+10 3.87E+09 2,756,506 5.74E+09 1.2E+10 1.16E+10 8.85E+08 8.44E+09
worst 100 5.45E+10 21,279,391 8.72E+10 13,852,712 3.49E+10 9.82E+09 5,284,968 1.09E+10 2.39E+10 1.75E+10 2.88E+09 9.54E+09
std 0 4.35E+09 9,547,461 8.27E+09 6,130,610 2.27E+09 3.06E+09 1,169,138 2.34E+09 6.24E+09 2.59E+09 9.53E+08 5.65E+08
median 100 5.19E+10 5,833,788 8.11E+10 2,946,011 3.25E+10 6.28E+09 4,237,091 7.61E+09 1.74E+10 1.46E+10 2.44E+09 8.73E+09
rank 1 12 4 13 3 11 6 2 7 10 9 5 8
C17-F3 mean 300 137,010.9 126,882.3 136,511.5 17,391.76 95,002.13 201,272.3 41,494.88 112,747.5 85,794.71 153,610.6 125,333.9 226,348.9
best 300 117,906.7 97,696.29 124,125.1 15,025.04 83,816.75 152,134.7 33,432.18 99,401.38 65,216.63 139,017.6 94,437.17 188,829.6
worst 300 157,634.1 153,730.6 148,328 20,524.62 101,529.7 306,297.4 51,471.59 126,680.5 97,304.28 172,990.6 162,490.2 259,863.3
std 0 18,198.32 274,92.83 11,628.69 2686.645 8787.683 78,962.98 8212.567 12,134.77 16,021.99 18,038.98 32,119.68 31,660.35
median 300 136,251.3 128,051.1 136,796.5 17,008.7 97,331.05 173,328.5 40,537.89 112,454.1 90,328.97 151,217 122,204 228,351.4
rank 1 10 8 9 2 5 12 3 6 4 11 7 13
C17-F4 mean 470.3679 12,640.05 670.9189 20,297.76 529.2201 7151.718 1728.284 556.4852 1299.368 2455.851 2684.969 941.9422 1375.405
best 428.5127 9836.365 654.6081 13,423.73 493.8869 5740.654 1128.951 520.5781 981.7953 1417.507 2250.684 654.6616 1194.41
worst 525.7252 14,388.37 689.3209 24,235.9 581.4109 9217.082 2051.556 618.0226 1569.432 4151.915 2849.68 1617.781 1483.827
std 53.9489 2214.027 18.01175 5368.95 44.6304 1598.366 449.3558 46.63019 289.3042 1307.92 316.5375 492.8826 138.0845
median 463.6168 13,167.74 669.8733 21,765.71 520.7913 6824.568 1866.314 543.6699 1323.123 2126.992 2819.756 747.663 1411.692
rank 1 12 4 13 2 11 8 3 6 9 10 5 7
C17-F5 mean 504.7261 1037.655 832.0331 1062.51 728.5695 1077.7 915.4502 730.7567 719.4511 951.9034 788.0505 773.5328 860.9533
best 503.9798 1009.534 796.5431 1053.971 649.5934 956.2157 883.3966 658.6571 686.5838 906.6592 733.7376 717.5713 825.7998
worst 505.9698 1062.384 874.7422 1070.73 790.4663 1164.931 937.424 834.3487 751.0828 977.7863 821.9891 830.6777 884.0127
std 1.036717 27.61624 36.05762 7.545912 64.31447 111.7325 28.62198 84.28709 34.43552 34.26955 45.11241 50.26869 28.8839
median 504.4773 1039.35 828.4235 1062.669 737.1091 1094.826 920.4901 715.0105 720.069 961.584 798.2378 772.9411 867.0004
rank 1 11 7 12 3 13 9 4 2 10 6 5 8
C17-F6 mean 600 681.9603 652.3174 683.7161 610.9482 677.4992 684.2625 633.2341 620.654 655.7374 650.412 646.7268 642.4574
best 600 679.4617 648.6703 681.4595 608.2624 660.2885 679.3851 624.4301 615.8844 644.814 645.9264 644.6453 631.948
worst 600 686.6001 656.7956 686.2413 614.4981 692.0708 691.2724 653.6353 628.6895 663.5099 653.3149 649.7848 652.834
std 0 3.618989 4.092498 2.496933 2.906614 15.27414 5.509322 15.03081 6.167687 8.616449 3.484165 2.621147 9.547808
median 600 680.8897 651.9018 683.5817 610.5162 678.8188 683.1963 627.4354 619.021 657.3128 651.2033 646.2385 642.5239
rank 1 11 8 12 2 10 13 4 3 9 7 6 5
C17-F7 mean 756.7298 1667.515 1560.123 1752.153 1019.514 1574.269 1595.787 1040.812 1050.837 1401.142 1343.727 1164.307 1255.661
best 754.7543 1651.905 1504.114 1689.052 964.5631 1449.444 1546.801 1005.244 1024.421 1289.8 1193.977 1033.213 1194.715
worst 758.3522 1687.845 1622.18 1844.419 1066.022 1694.582 1666.003 1072.362 1072.624 1446.958 1459.1 1355.126 1292.502
std 1.69049 16.27905 54.23613 74.30205 53.48986 127.8245 59.26941 29.9404 24.75606 81.06107 127.8115 152.3713 47.12675
median 756.9065 1665.154 1557.099 1737.571 1023.735 1576.525 1585.172 1042.82 1053.152 1433.904 1360.916 1134.445 1267.713
rank 1 12 9 13 2 10 11 3 4 8 7 5 6
C17-F8 mean 805.721 1351.115 1100.231 1374.561 1003.671 1365.881 1270.348 1013.356 1023.541 1268.178 1113.789 1042.706 1213.494
best 802.9849 1306.313 1057.214 1351.374 973.8483 1277.833 1160.6 982.3324 990.5358 1217.312 1103.608 1002.871 1180.728
worst 810.9445 1385.419 1143.508 1389.617 1034.27 1477.047 1366.566 1070.762 1059.941 1318.566 1129.003 1102.533 1230.719
std 3.891615 40.62085 53.30554 17.89982 34.19462 92.61518 92.03362 42.74163 34.1913 45.15074 12.91415 49.50142 24.50797
median 804.4773 1356.363 1100.101 1378.627 1003.282 1354.322 1277.113 1000.165 1021.844 1268.417 1111.273 1032.71 1221.264
rank 1 11 6 13 2 12 10 3 4 9 7 5 8
C17-F9 mean 900 31,051.1 11,675.13 31,214.4 3238.679 32,551.61 28,392.1 17,082.88 6244.482 20,791.08 9460.756 9138.502 11,261.84
best 900 29,810.85 11,146.57 29,323.19 2032.095 29,890.05 26,453.7 9511.032 5336.41 15,961.04 8656.557 8548.842 9310.568
worst 900 34,048.73 12,380.93 32,909.38 4682.586 36,436.44 33,315.56 22,458.82 7025.394 24,361.63 10,359.38 10,329.21 13,039.73
std 1.01E−13 2195.966 559.63 1783.168 1191.598 3056.232 3579.538 6649.355 980.5268 3819.075 778.1417 888.7583 2162.608
median 900 30,172.41 11,586.52 31,312.5 3120.018 31,939.98 26,899.57 18,180.84 6308.061 21,420.81 9413.544 8837.979 11,348.54
rank 1 11 7 12 2 13 10 8 3 9 5 4 6
C17-F10 mean 4347.157 11,960.59 7997.318 12,995.76 6477.477 10,922.78 10,929.36 7432.631 8285.742 12,815.7 8228.953 7542.419 10,862.63
best 3555.132 11,511.48 7500.439 12,777.04 5611.471 10,052.08 9913.249 6365.31 6430.52 12,259.66 7464.218 7304.678 10,276.37
worst 5099.795 12,681.4 8505.039 13,415.44 7088.816 11,917.98 11,991.42 8254.136 12,660.49 13,271.59 9251.954 7955.953 11,437.09
std 701.6898 588.0922 446.6302 320.7599 774.7588 852.148 980.4482 881.348 3204.405 539.0572 824.0267 309.7522 536.1431
median 4366.851 11,824.73 7991.897 12,895.29 6604.81 10,860.52 10,906.38 7555.538 7025.978 12,865.77 8099.819 7454.522 10,868.54
rank 1 11 5 13 2 9 10 3 7 12 6 4 8
C17-F11 mean 1128.435 13,276.15 1549.54 18,035.48 1251.306 11,182.39 4518.476 1518.213 5397.474 4531.994 12,260.42 1605.813 20,608.14
best 1121.25 12,245.45 1447.083 16,062.88 1204.288 9640.254 4005.969 1391.868 3312.855 4260.571 11,504.42 1377.528 12,119.73
worst 1133.132 13,924.57 1673.984 19,534.31 1281.377 13,383.07 5612.842 1642.615 9241.98 5027.755 13,871.78 1877.551 27,569.61
std 5.923599 809.4648 113.8746 1578.695 37.32774 1755.825 805.482 119.8359 2981.794 385.6477 1182.421 233.5491 6954.273
median 1129.678 13,467.3 1538.547 18,272.37 1259.779 10,853.12 4227.547 1519.185 4517.532 4419.825 11,832.75 1584.087 21,371.61
rank 1 11 4 12 2 9 6 3 8 7 10 5 13
C17-F12 mean 2905.102 3.72E+10 64,228,735 6.06E+10 13,971,168 2.2E+10 1.13E+09 69,199,513 8.18E+08 4.31E+09 1.85E+09 1.37E+09 1.76E+08
best 2527.376 3.12E+10 28,088,258 4.42E+10 13,160,600 9.3E+09 9.31E+08 38,018,157 1.3E+08 2.43E+09 6.11E+08 12,579,081 56,622,701
worst 3168.37 4.46E+10 98,280,368 8.32E+10 14,626,284 3.71E+10 1.53E+09 1.09E+08 1.52E+09 8.47E+09 3.33E+09 3.95E+09 2.43E+08
std 297.8769 6.56E+09 40,914,989 1.95E+10 74,4618.4 1.25E+10 3.02E+08 32,549,765 7.54E+08 3.08E+09 1.22E+09 2E+09 89,011,221
median 2962.331 3.64E+10 65,273,157 5.76E+10 14,048,895 2.09E+10 1.02E+09 64,796,411 8.12E+08 3.16E+09 1.74E+09 7.55E+08 2.02E+08
rank 1 12 3 13 2 11 7 4 6 10 9 8 5
C17-F13 mean 1340.1 2.1E+10 12,8969.3 3.67E+10 15,885.29 8.59E+09 80,889,215 20,7549.2 3.04E+08 4.99E+08 15,793,658 4.07E+08 35,383,568
best 1333.781 1.21E+10 31,511.27 1.86E+10 8423.568 4.57E+09 60,813,819 13,0518.8 1.38E+08 4.06E+08 28,858.85 45,666.3 23,065,689
worst 1343.015 2.86E+10 28,0915.2 5.28E+10 18,693.2 1.34E+10 91,852,073 32,1861.4 7.65E+08 6.82E+08 53,232,163 1.03E+09 47,290,081
std 4.660414 7.89E+09 11,6012.5 1.56E+10 5419.363 4.06E+09 14,937,750 88,542.93 3.35E+08 1.35E+08 27,629,074 5.45E+08 11,773,479
median 1341.801 2.16E+10 10,1725.4 3.78E+10 18,212.2 8.22E+09 85,445,485 188,908.3 1.57E+08 4.54E+08 4,956,805 3E+08 35,589,250
rank 1 12 3 13 2 11 7 4 8 10 5 9 6
C17-F14 mean 1429.458 22,138,175 1,043,123 41,274,749 1558.988 2,291,762 4,066,361 162,996.9 982,315.2 738,324.2 12,918,985 489,682 9,561,064
best 1425.995 7,231,304 323,256 12,659,192 1546.115 605,547.5 3,600,215 103,335.7 76,691.77 608,829.9 2,929,237 176,046.7 4,704,918
worst 1431.939 43,338,397 2,484,230 83,568,278 1582.843 3,634,801 4,832,202 316,175.9 1,895,369 851,820.3 21,211,653 784,154.5 16,455,299
std 2.852761 16,583,070 1,069,026 32,825,935 18.30144 1,366,949 578,994.2 111,516.1 808,058.7 137,939 9,020,287 270,853.1 5,399,179
median 1429.95 18,991,500 682,503.8 34,435,763 1553.497 2,463,349 3,916,514 116,238.1 978,600 746,323.4 13,767,524 499,263.5 8,542,020
rank 1 12 7 13 2 8 9 3 6 5 11 4 10
C17-F15 mean 1530.66 2.22E+09 32,718.17 3.57E+09 2239.736 1.45E+09 8,462,655 103,834.4 5,074,514 60,186,667 1.68E+08 9569.48 7,314,943
best 1526.359 1.57E+09 20,328.87 2.79E+09 2110.365 5E+08 780,284.2 43,186.67 36,399.24 35,292,025 16,631.35 2695.893 2,485,932
worst 1532.953 2.91E+09 59,974.55 4.23E+09 2382.754 3.16E+09 15,801,114 154,709.4 13,365,072 78,344,085 6.53E+08 18,491.01 15,875,307
std 3.193106 6.85E+08 20,003.62 6.95E+08 156.9426 1.35E+09 7,185,508 53,956.69 6,329,484 19,594,013 3.52E+08 7647.803 6,444,348
median 1531.664 2.2E+09 25,284.63 3.63E+09 2232.913 1.08E+09 8,634,612 108,720.8 3,448,292 63,555,279 10,185,651 8545.507 5,449,267
rank 1 12 4 13 2 11 8 5 6 9 10 3 7
C17-F16 mean 2062.891 5745.424 4099.726 6855.564 2733.524 4345.037 5070.653 3223.862 3221.386 4261.553 3759.801 3235.29 3724.023
best 1728.6 5021.146 3797.152 5232.864 2579.866 3842.738 4253.427 3028.869 2863.636 3913.829 3472.365 2862.784 3178.337
worst 2242.663 7271.321 4460.874 10,097.6 2996.441 4587.664 5643.426 3415.328 3726.251 4499.411 4087.984 3654.38 4158.479
std 253.4793 1148.025 329.1293 2425.116 213.3552 379.1183 662.8411 172.0789 440.5687 269.1825 338.718 424.9433 463.8989
median 2140.15 5344.614 4070.44 6045.895 2678.896 4474.873 5192.879 3225.626 3147.828 4316.486 3739.427 3211.998 3779.638
rank 1 12 8 13 2 10 11 4 3 9 7 5 6
C17-F17 mean 2021.151 6861.854 3396.275 9790.292 2543.397 3736.742 4228.425 2980.016 2892.828 3900.141 3619.725 3219.341 3418.688
best 1900.43 5295.665 3005.885 7230.627 2472.901 3056.519 3816.979 2498.974 2763.483 3344.926 3228.971 3028.007 3217.262
worst 2138.267 8331.744 3851.936 12,612.77 2598.685 4136.552 4427.228 3401.68 3134.984 4230.555 3885.98 3511.96 3621.124
std 146.0805 1361.803 434.8743 2412.363 58.14989 512.1874 310.0241 406.0587 180.4802 427.0499 308.8662 250.608 205.6284
median 2022.954 6910.003 3363.64 9658.884 2551.001 3876.95 4334.746 3009.705 2836.423 4012.542 3681.974 3168.699 3418.184
rank 1 12 6 13 2 9 11 4 3 10 8 5 7
C17-F18 mean 1830.62 64,614,732 2,061,097 95,851,415 25,555.65 29,921,140 38,563,414 2,256,925 4,888,694 7,002,910 7,180,913 706,632.7 8,087,329
best 1822.239 51,707,525 270,404.9 43,098,156 3688.893 2,689,736 10,443,467 1,328,303 936,181 4,814,516 3,394,229 300,329.9 2,900,345
worst 1841.673 76,192,919 3,774,095 1.33E+08 38,192.73 85,479,161 69,803,917 3,512,025 9,749,185 9,733,756 13,417,427 1,157,206 19,439,061
std 8.863799 11,510,224 1,931,071 48,091,456 16,404.48 41,406,915 31,950,414 1,136,560 5,005,928 2,264,668 4,972,069 427,457.7 8,313,863
median 1829.285 65,279,243 2,099,944 1.04E+08 30,170.48 15,757,831 37,003,137 2,093,686 4,434,706 6,731,684 5,955,997 684,497.7 5,004,954
rank 1 12 4 13 2 10 11 5 6 7 8 3 9
C17-F19 mean 1925.185 2.32E+09 221,975.9 3.28E+09 2077.524 2.28E+09 5,839,914 4,374,448 992,916.8 43,270,616 386,089.3 336,264.1 846,771.8
best 1924.437 1.11E+09 78,106.34 2.21E+09 2017.947 8,346,421 878,605.2 3,329,863 486,155.2 36,735,230 222,137.6 2767.461 662,438.1
worst 1926.121 3.88E+09 457,483.6 4.05E+09 2106.959 6.67E+09 13,763,901 5,424,967 1,526,502 54,948,013 845,719.2 839,444.5 1,146,958
std 0.861219 1.27E+09 179,180.7 8.92E+08 44.25295 3.24E+09 6,026,000 930,913.9 473,371.6 8,823,346 333,598.3 434,170.1 248,843.6
median 1925.091 2.15E+09 176,156.8 3.42E+09 2092.596 1.23E+09 4,358,575 4,371,482 979,505 40,699,610 238,250.2 251,422.2 788,845.3
rank 1 12 3 13 2 11 9 8 7 10 5 4 6
C17-F20 mean 2160.172 3643.744 3162.642 3872.417 2645.336 3307.283 3576.753 3174.558 2614.794 3598.47 3825.639 3182.392 3078.958
best 2104.423 3321.011 2663.899 3597.129 2368.73 2883.838 3286.472 2964.002 2407.186 3523.56 3591.53 2866.252 2986.774
worst 2323.891 3788.589 3609.976 4028.18 2920.336 3500.099 4068.862 3607.955 2803.756 3711.266 4098.01 3324.36 3179.235
std 118.7931 238.5395 433.907 208.6822 253.4857 309.8258 374.6389 327.1354 227.4299 94.65403 226.473 231.1378 85.67285
median 2106.186 3732.688 3188.346 3932.179 2646.14 3422.597 3475.84 3063.137 2624.118 3579.528 3806.507 3269.477 3074.912
rank 1 11 5 13 3 8 9 6 2 10 12 7 4
C17-F21 mean 2314.895 2911.296 2708.199 2944.32 2445.682 2881.393 2873.592 2552.141 2507.304 2765.108 2782.422 2625.187 2703.313
best 2309.045 2881.915 2601.485 2852.003 2426.012 2791.667 2773.116 2523.981 2458.18 2741.518 2723.144 2561.21 2680.796
worst 2329.683 2939.209 2867.073 3021.404 2469.568 3024.514 2957.342 2586.126 2545.779 2806.139 2818.91 2714.661 2722.612
std 10.75977 33.25097 123.952 86.19918 24.23715 109.0393 85.20166 35.23339 40.96419 32.60945 46.08534 72.90841 20.6077
median 2310.426 2912.031 2682.12 2951.936 2443.575 2854.696 2881.956 2549.229 2512.629 2756.387 2793.816 2612.438 2704.922
rank 1 12 7 13 2 11 10 4 3 8 9 5 6
C17-F22 mean 3095.169 13,541.5 10,253.37 14,628.25 5296.695 12,479.83 12,417.09 8414.581 8307.775 14,155.83 10,502.69 9065.003 8273.435
best 2300 13,306.65 8551.137 14,094.07 2319.709 12,172.5 12,192.35 6411.778 7766.883 13,363.28 10,038.76 7990.454 3782.2
worst 5480.678 13,892.82 12,094 15,153.48 8384.778 12,641.71 12,871.72 9834 8789.711 14,962.82 10,913.82 9810.043 12,642.36
std 1730.769 289.6574 1783.239 479.8504 3573.342 238.4903 337.2136 1579.056 458.2178 922.9868 390.3125 845.8556 4946.644
median 2300 13,483.25 10,184.17 14,632.73 5241.148 12,552.56 12,302.15 8706.272 8337.253 14,148.61 10,529.09 9229.756 8334.592
rank 1 11 7 13 2 10 9 5 4 12 8 6 3
C17-F23 mean 2743.354 3689.579 3233.464 3755.06 2887.099 3623.224 3625.411 2972.584 2999.287 3224.747 4495.979 3307.134 3294.604
best 2729.988 3621.225 3159.5 3712.118 2874.042 3441.415 3467.184 2936.881 2929.037 3150.466 4326.657 3249.029 3181.817
worst 2752.657 3772.607 3306.203 3790.727 2906.781 3914.242 3711.376 3036.371 3118.56 3283.576 4642.809 3356.671 3417.095
std 10.90099 71.67639 74.93054 36.15864 15.31114 244.6359 119.6447 50.82305 89.74451 59.99883 141.3101 61.34768 104.9761
median 2745.387 3682.242 3234.076 3758.696 2883.787 3568.618 3661.542 2958.542 2974.775 3232.472 4507.225 3311.417 3289.752
rank 1 11 6 12 2 9 10 3 4 5 13 8 7
C17-F24 mean 2919.043 4054.247 3450.701 4292.706 3063.289 3876.423 3724.834 3123.737 3178.789 3394.555 4202.741 3407.358 3581.48
best 2909.046 3834.477 3350.833 3871.663 3033.954 3797.469 3624.721 3095.062 3097.68 3323.599 4168.799 3264.631 3542.81
worst 2924.412 4553.465 3616.246 5332.137 3100.834 3995.323 3772.58 3150.743 3292.593 3450.283 4250.117 3540.786 3671.707
std 7.426653 365.0322 125.0123 761.4861 32.75587 98.97493 74.03394 27.38206 89.38906 62.56123 39.22231 133.3472 65.79617
median 2921.358 3914.522 3417.862 3983.512 3059.185 3856.449 3751.017 3124.572 3162.442 3402.168 4196.024 3412.007 3555.702
rank 1 11 7 13 2 10 9 3 4 5 12 6 8
C17-F25 mean 2983.145 7840.95 3161.682 10,719.34 3066.596 5602.111 4003.228 3055.294 3899.38 4192.377 4109.234 3112.703 3912.044
best 2980.235 6532.25 3139.605 8691.316 3046.332 4634.032 3650.751 3027.752 3729.328 3770.211 3810.836 3074.445 3816.771
worst 2991.831 8671.091 3199.227 11,966.67 3084.832 6525.356 4267.227 3072.492 4076.001 4706.468 4679.679 3157.627 4018.564
std 6.301777 1031.155 28.22414 1674.205 17.3182 884.9832 285.4902 21.50476 197.6538 513.2887 445.8802 45.2687 90.35902
median 2980.257 8080.23 3153.949 11109.69 3067.611 5624.529 4047.468 3060.466 3896.096 4146.414 3973.21 3109.37 3906.421
rank 1 12 5 13 3 11 8 2 6 10 9 4 7
C17-F26 mean 3776.432 12,636.24 9947.181 13,487.2 3334.791 11,373.32 12,403.24 5464.064 6090.526 8864.466 10,440.88 7481.348 8229.115
best 3748.807 12,413.2 9479.973 12,926.99 3135.514 9523.972 11,634.58 5015.351 5727.379 8146.697 10,144.46 7017.238 6617.009
worst 3793.643 12,836.52 10,373.29 14,293.02 3620.179 12,504.6 13,871.88 5676.619 6416.408 9551.372 10,765.37 7950.947 10,360.36
std 21.16788 200.8083 397.9168 640.6481 239.2718 1402.329 1086.993 333.8182 371.3207 636.637 278.0636 453.9675 1936.675
median 3781.639 12,647.63 9967.729 13,364.39 3291.736 11,732.36 12,053.25 5582.144 6109.158 8879.897 10,426.85 7478.604 7969.545
rank 2 12 8 13 1 10 11 3 4 7 9 5 6
C17-F27 mean 3251.26 4604.683 3785.005 4768.312 3381.636 4527.175 4311.872 3363.123 3603.31 3768.097 7448.439 3608.047 4298.472
best 3227.701 4328.522 3742.878 4442.58 3274.957 3896.836 3813.752 3327.505 3563.181 3613.084 7240.195 3379.099 4201.797
worst 3313.631 4793.514 3853.479 5001.772 3480.831 4957.193 4822.33 3411.334 3658.614 3915.971 7759.333 3820.856 4436.656
std 45.39257 226.2235 57.51471 285.3473 91.87787 504.5393 511.8991 40.28773 49.36585 149.5813 273.5143 213.321 110.8682
median 3231.854 4648.348 3771.831 4814.447 3385.378 4627.336 4305.702 3356.826 3595.723 3771.666 7397.113 3616.117 4277.718
rank 1 11 7 12 3 10 9 2 4 6 13 5 8
C17-F28 mean 3258.849 7995.78 3559.18 10,110.21 3350.874 6721.897 4620.526 3293.53 4258.861 4989.789 4826.547 3800.23 4809.503
best 3258.849 7261.377 3483.448 8998.327 3314.656 5525.71 4089.321 3277.285 4020.132 4448.421 4770.251 3521.168 4592.939
worst 3258.849 9864.723 3639.697 13,054.31 3395.35 7951.765 4827.562 3306.233 4558.861 5468.299 4925.914 4249.367 4968.115
std 0 1366.648 84.93991 2139.942 43.07498 1334.759 386.6102 14.34867 271.1234 455.7595 75.25557 342.051 196.7871
median 3258.849 7428.51 3556.788 9194.103 3346.745 6705.057 4782.609 3295.302 4228.226 5021.218 4805.012 3715.193 4838.479
rank 1 12 4 13 3 11 7 2 6 10 9 5 8
C17-F29 mean 3263.038 12,318.61 5299.609 17,388.78 4082.162 6507.888 8359.279 4724.924 4757.362 6192.417 7611.6 4727.779 5858.844
best 3247.132 8329.778 5194.722 9469.678 3730.764 6141.641 5766.427 4358.921 4577.561 5367.093 6357.457 4485.418 5558.764
worst 3278.787 16,671.54 5379.045 27,143.86 4323.353 6956.538 10,777.95 5273.739 5037.961 7042.906 9841.389 4832.262 6413.197
std 18.99818 4176.796 84.21284 8564.455 291.6212 366.2191 2246.896 423.0455 231.1973 860.2741 1716.019 177.199 432.7455
median 3263.116 12,136.57 5312.334 16,470.79 4137.266 6466.687 8446.367 4633.518 4706.962 6179.835 7123.777 4796.718 5731.708
rank 1 12 6 13 2 9 11 3 5 8 10 4 7
C17-F30 mean 623,575.2 2.8E+09 18,892,529 4.69E+09 1,630,658 1.42E+09 1.36E+08 60,436,983 1.19E+08 2.57E+08 1.58E+08 4,325,487 50,145,531
best 582,411.6 2.16E+09 11,594,191 2.88E+09 1,237,598 1.74E+08 91,745,090 54,760,529 57,828,333 1.79E+08 1.21E+08 3,159,284 40,452,446
worst 655,637.4 3.8E+09 25,767,629 7.36E+09 2,647,612 2.87E+09 1.87E+08 69,458,205 1.77E+08 3.25E+08 2.07E+08 5,901,616 70,259,757
std 35,550.35 7.78E+08 7,624,147 2.1E+09 741,170.3 1.51E+09 52,122,607 6,967,947 65,532,625 66,719,715 39,154,562 1,485,469 15,004,001
median 628,125.9 2.62E+09 19,104,147 4.26E+09 1,318,710 1.31E+09 1.32E+08 58,764,598 1.21E+08 2.62E+08 1.52E+08 4,120,524 44,934,960
rank 1 12 4 13 2 11 8 6 7 10 9 3 5
Sum rank 30 335 166 367 63 294 269 112 144 248 254 150 207
Mean rank 1.034483 11.55172 5.724138 12.65517 2.172414 10.13793 9.275862 3.862069 4.965517 8.551724 8.758621 5.172414 7.137931
Total rank 1 12 6 13 2 11 10 3 4 8 9 5 7

Table 4.

Optimization results of CEC 2017 test suite (dimension = 100).

GAO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C17-F1 mean 100 1.42E+11 3.33E+09 1.99E+11 5.05E+08 1.08E+11 5.36E+10 1.18E+08 4.88E+10 7.79E+10 1.16E+11 1.72E+10 4.79E+10
best 100 1.39E+11 1.64E+09 1.96E+11 3.82E+08 9.48E+10 5.06E+10 93,364,159 4.23E+10 7.41E+10 1.07E+11 1.16E+10 4.54E+10
worst 100 1.46E+11 4.78E+09 2.01E+11 6.38E+08 1.2E+11 6E+10 1.43E+08 5.52E+10 8.58E+10 1.24E+11 2.33E+10 5.42E+10
std 1.26E−14 3.17E+09 1.4E+09 2.5E+09 1.34E+08 1.15E+10 4.68E+09 22,474,625 6.67E+09 5.86E+09 8.07E+09 7.02E+09 4.56E+09
median 100 1.42E+11 3.45E+09 2E+11 5E+08 1.08E+11 5.19E+10 1.17E+08 4.89E+10 7.58E+10 1.17E+11 1.69E+10 4.61E+10
rank 1 12 4 13 3 10 8 2 7 9 11 5 6
C17-F3 mean 300 383,842.5 297,065.6 293,794.9 153,298.3 328,723.6 691,639.7 416,132.3 332,672.7 271,228.7 311,511.4 479,906.4 510,979.9
best 300 347,055.6 291,126.5 287,981.8 117,347.5 262,753.2 603,296.5 350,527.3 302,866 254,325.9 293,641.2 363,707.2 486,401.5
worst 300 404,518.9 307,223.7 297,843.6 185,492.3 374,459.6 801,936.8 493,241.5 361,288.5 281,529.8 337,941.2 667,849.7 530,908
std 0 28,746.65 7991.764 4536.701 32,202.67 51,409.18 93,079.01 77,508.77 34,488.75 12,808.7 20,829.9 152,845.3 20,545.72
median 300 391,897.7 294,956.2 294,677.1 155,176.7 338,840.9 680,662.7 410,380.2 333,268.2 274,529.5 307,231.6 444,034.3 513,305
rank 1 9 5 4 2 7 13 10 8 3 6 11 12
C17-F4 mean 602.1722 38,110.01 1463.253 64,164.55 1006.509 13,783.02 9464.142 786.2998 3945.925 9294.052 29,213.19 2245.803 7984.771
best 592.0676 35,091.62 1264.191 58,182.9 897.1236 9057.49 8090.444 730.426 3070.574 8855.585 23,271.15 1426.042 7539.968
worst 612.2769 41,757.16 1585.01 71,464.69 1120.178 18,294.93 10,365.01 824.3422 5875.795 10,052.86 33,033.64 2784.574 8489.108
std 12.6933 3120.87 163.7911 5990.231 117.2572 4153.933 1053.821 43.67809 1411.052 614.74 5126.89 636.9998 473.8265
median 602.1722 37,795.63 1501.906 63,505.3 1004.366 13,889.83 9700.557 795.2156 3418.665 9133.882 30,273.98 2386.298 7955.004
rank 1 12 4 13 3 10 9 2 6 8 11 5 7
C17-F5 mean 512.9345 1822.958 1254.804 1797.302 1180.149 1951.64 1694.074 1188.948 1144.611 1723.369 1273.26 1338.401 1479.648
best 510.9445 1810.032 1247.779 1762.886 1058.321 1925.842 1597.583 1106.621 1106.334 1709.908 1229.786 1249.81 1365.867
worst 514.9244 1842.261 1264.602 1836.005 1262.3 1971.671 1817.129 1243.386 1180.804 1733.231 1309.72 1468.787 1563.629
std 1.976192 15.07849 7.699721 33.55469 107.0527 21.56576 100.3657 71.93899 33.26408 12.23907 38.09065 109.6983 94.87956
median 512.9345 1819.769 1253.418 1795.158 1199.987 1954.523 1680.793 1202.892 1145.653 1725.168 1276.766 1317.504 1494.549
rank 1 12 5 11 3 13 9 4 2 10 6 7 8
C17-F6 mean 600 692.577 655.5795 691.1357 635.2408 696.3684 690.4931 666.174 637.6212 671.6821 657.3416 655.2134 656.5741
best 600 689.8974 651.7584 686.6009 631.618 685.6778 681.9086 660.1273 634.2029 665.0953 654.737 648.7785 651.1896
worst 600 695.4305 659.2454 693.6932 641.3751 704.1858 704.4683 670.9605 642.4555 676.195 660.4212 659.6686 661.1833
std 0 2.546137 3.456439 3.386495 5.031692 9.392332 10.89493 5.209416 4.091298 5.732751 2.561423 5.86286 5.595732
median 600 692.49 655.6572 692.1244 633.9852 697.8051 687.7977 666.804 636.9131 672.7191 657.1041 656.2032 656.9618
rank 1 12 5 11 2 13 10 8 3 9 7 4 6
C17-F7 mean 811.392 3249.903 2809.103 3346.473 1780.479 3104.965 3225.886 1917.393 1930.261 2822.842 2843.951 2306.959 2388.427
best 810.0205 3177.749 2668.95 3271.134 1724.798 2964.814 3121.438 1791.09 1765.371 2702.685 2727.712 2093.38 2301.084
worst 813.1726 3328.526 2917.615 3420.581 1857.776 3239.49 3366.132 2013.472 2047.707 2918.788 3034.433 2407.096 2565.297
std 1.589565 67.33718 133.3426 68.67265 62.52161 135.5128 122.8352 100.7463 129.6834 97.17736 144.9155 160.257 131.1636
median 811.1874 3246.669 2824.924 3347.089 1769.67 3107.778 3207.986 1932.506 1953.982 2834.946 2806.83 2363.681 2343.663
rank 1 12 7 13 2 10 11 3 4 8 9 5 6
C17-F8 mean 812.437 2212.881 1647.373 2258.275 1393.836 2194.03 2127.672 1413.475 1464.418 2073.614 1720.513 1621.273 1890.868
best 808.9546 2175.495 1607.877 2244.776 1231.543 2149.448 1940.752 1286.824 1383.515 2020.033 1632.323 1580.032 1828.262
worst 816.9143 2263.473 1682.993 2272.856 1494.677 2267.22 2267.929 1577.554 1581.495 2124.601 1829.583 1712.871 1934.221
std 3.697116 47.32375 36.88267 13.67073 125.6233 59.80833 175.3943 131.2531 104.9716 46.47028 92.56546 66.9778 50.5737
median 811.9395 2206.278 1649.31 2257.735 1424.562 2179.726 2151.004 1394.762 1446.331 2074.911 1710.072 1596.095 1900.494
rank 1 12 6 13 2 11 10 3 4 9 7 5 8
C17-F9 mean 900 76,816.82 24,403.01 66,222.08 21,063.39 101,805.1 65,821.32 51,366.63 32,197.6 63,893.94 21,998.26 29,657.46 40,458.63
best 900 68,900.42 20,792.7 63,921.65 19,605.36 83,970.72 51,834.98 43,765.53 20,725.61 61,124.6 20,701.12 25,525.09 36,964.91
worst 900 88,390.72 27,225.2 68,008.19 21,723.38 126,398.6 82,335.26 58,117.91 42,909.41 65,321.41 23,120.05 32,788.17 45,299.31
std 1.01E−13 9140.389 2905.49 1940.678 1065.91 19,383.02 16,524.1 6435.124 11,756.31 2089.674 1106.024 3542.998 3839.177
median 900 74,988.06 24,797.07 66,479.23 21,462.41 98,425.45 64,557.51 51,791.54 32,577.68 64,564.88 22,085.94 30,158.28 39,785.15
rank 1 12 4 11 2 13 10 8 6 9 3 5 7
C17-F10 mean 11,023.04 27,349.26 15,441.01 28,451.98 13,705.22 26,592.86 25,727.09 16,289.98 14,793.94 28,460.01 16,484.36 16,357.73 23,872.49
best 9625.608 27,025.57 13,346.64 27,628.2 13,035.67 26,097.57 25,018.54 15,674.02 13,811.72 27,371.81 14,979.87 14,952.56 23,395.55
worst 11,858.81 27,711.42 17,262.38 28,960.59 14,519.33 27,297.11 27,009.25 16,804.07 15,206.42 29,371.22 17,274.56 17,391.97 24,443.19
std 1054.018 322.3919 1881.722 649.5138 681.7138 609.0236 998.3499 535.963 720.7513 899.0758 1173.583 1109.584 473.1087
median 11,303.87 27,330.04 15,577.5 28,609.56 13,632.93 26,488.39 25,440.28 16,340.91 15,078.81 28,548.5 16,841.5 16,543.19 23,825.61
rank 1 11 4 12 2 10 9 5 3 13 7 6 8
C17-F11 mean 1162.329 138,171.3 54,218.15 173,245.6 4617.217 55,259.59 174,853 4448.069 73,503.38 60,611.45 145,056.9 44,126.05 117,068.8
best 1139.568 107,408.8 48,816.74 132,721.4 3646.106 25,475.78 101,876.7 3991.368 61,195.93 51,182.33 121,014.7 20,433.81 89,442.4
worst 1220.662 160,596.2 64,555.37 246,485.9 5510.858 78,913.32 281,535.5 4786.813 82,633.13 77,155.18 169,243.8 89,549.74 161,296.6
std 42.46,663 24,880.2 7905.572 55,743.48 873.2478 24,092.58 90,902.06 361.1768 10,009.55 12,382.24 21,675.86 33,640.04 34,264.38
median 1144.542 142,340.1 51,750.24 156,887.5 4655.952 58,324.63 157,999.9 4507.047 75,092.23 57,054.15 144,984.6 33,260.32 108,768.1
rank 1 10 5 12 3 6 13 2 8 7 11 4 9
C17-F12 mean 5974.805 8.83E+10 5.81E+08 1.44E+11 2.48E+08 4.76E+10 1.11E+10 3.08E+08 9.6E+09 1.84E+10 5.59E+10 8.47E+09 1.04E+10
best 5383.905 6.27E+10 3.09E+08 1.07E+11 1.39E+08 2.44E+10 8.99E+09 2.11E+08 6.66E+09 1.44E+10 4.85E+10 1.13E+09 9.44E+09
worst 6570.199 9.84E+10 9.16E+08 1.67E+11 2.98E+08 7.89E+10 1.26E+10 4.73E+08 1.14E+10 2.53E+10 6.58E+10 1.61E+10 1.22E+10
std 537.9317 1.86E+10 2.83E+08 2.96E+10 80,251,697 2.48E+10 1.67E+09 1.29E+08 2.23E+09 5.4E+09 7.83E+09 7.41E+09 1.38E+09
median 5972.559 9.6E+10 5.49E+08 1.5E+11 2.79E+08 4.35E+10 1.13E+10 2.75E+08 1.02E+10 1.69E+10 5.47E+10 8.34E+09 9.87E+09
rank 1 12 4 13 2 10 8 3 6 9 11 5 7
C17-F13 mean 1407.28 2.33E+10 93,518.05 3.57E+10 92,388.84 1.79E+10 4.38E+08 307,656.4 7.93E+08 2.36E+09 7.31E+09 1.48E+09 1.46E+08
best 1371.145 2.03E+10 62,963.2 2.76E+10 39,601.01 1.27E+10 3.11E+08 268,601.7 68,370,498 1.63E+09 4.49E+09 1.63E+08 1.15E+08
worst 1439.935 2.58E+10 119,547 4.05E+10 229,396.8 2.14E+10 5.92E+08 373,502.2 2.1E+09 2.85E+09 9.38E+09 2.67E+09 1.76E+08
std 37.80433 3.15E+09 25,701.38 6.46E+09 99,954.78 4.01E+09 1.57E+08 50,861.93 1.02E+09 6.06E+08 2.23E+09 1.34E+09 34,572,729
median 1409.02 2.35E+10 95,780.99 3.74E+10 50,278.77 1.87E+10 4.24E+08 294,260.8 5.03E+08 2.47E+09 7.68E+09 1.54E+09 1.47E+08
rank 1 12 3 13 2 11 6 4 7 9 10 8 5
C17-F14 mean 1467.509 38,082,540 5,605,598 66,800,415 86,803.32 7,468,562 12,208,820 2,554,157 8,074,153 11,671,525 9,650,213 693,949.6 8,816,297
best 1458.803 32,883,853 3,415,353 60,921,097 24,818.95 3,392,874 7,027,213 779,198.2 5,111,901 8,699,694 7,452,511 330,058.5 4,938,542
worst 1472.733 43,502,874 9,299,515 73,125,403 184,373.4 14,562,847 16,677,476 3,504,230 12,091,525 14,923,989 14,459,922 1,441,316 12,994,340
std 6.576739 5,070,725 2,823,155 6,372,141 77,728.84 5,353,785 4,317,050 1,323,088 3,325,705 3,539,240 3,527,329 550,201.6 3,648,073
median 1469.25 37,971,717 4,853,762 66,577,581 69,010.46 5,959,264 12,565,295 2,966,600 7,546,593 11,531,208 8,344,210 502,212.2 8,666,153
rank 1 12 5 13 2 6 11 4 7 10 9 3 8
C17-F15 mean 1609.893 1.29E+10 77,286.65 1.97E+10 53,518.19 1.01E+10 58,778,711 112,631.2 4.2E+08 9.99E+08 1.04E+09 2.8E+08 10,645,222
best 1551.154 1.19E+10 66,065.03 1.41E+10 15,481.08 2.1E+08 32,741,200 74,503.83 27,578,628 3.34E+08 4.17E+08 59,310.67 6,867,523
worst 1652.294 1.45E+10 90,717.93 2.46E+10 81,241.61 1.89E+10 1.13E+08 162,708.2 1.26E+09 2.13E+09 1.33E+09 1.1E+09 18,137,162
std 48.04352 1.22E+09 13,326.2 5.67E+09 30,201.72 8.84E+09 39,831,191 41,080.69 6.2E+08 8.58E+08 4.6E+08 5.98E+08 5,569,986
median 1618.063 1.26E+10 76,181.82 2.01E+10 58,675.04 1.06E+10 44,721,842 106,656.4 1.97E+08 7.65E+08 1.21E+09 7,243,656 8,788,101
rank 1 12 3 13 2 11 6 4 8 9 10 7 5
C17-F16 mean 2711.795 16,653.33 6752.877 19,761.53 5402.929 12,984.33 14,386.34 6302.297 5887.338 10,410.19 10,042.59 6208.393 9611.617
best 2171.69 15,547.12 5757.308 15,679.72 5307.987 10,829.43 11,844.45 5656.217 5400.708 9952.753 8810.787 5969.755 8736.575
worst 3397.326 17,141.74 7390.032 22,016.02 5537.679 15,421.12 15,871.81 6741.128 6461.293 11,325.02 11,504.13 6395.272 10,309.06
std 554.7769 808.8727 770.3875 3124.823 107.4954 2051.445 1956.809 519.8196 601.7643 695.8643 1314.398 191.9232 776.5046
median 2639.081 16,962.24 6932.084 20,675.18 5383.024 12,843.39 14,914.56 6405.921 5843.676 10,181.5 9927.721 6234.271 9700.415
rank 1 12 6 13 2 10 11 5 3 9 8 4 7
C17-F17 mean 2716.564 3,542,232 5563.724 6,967,945 4559.569 184,224.2 14,958.36 4828.586 5278.937 7997.77 39,614.15 5776.221 6664.501
best 2275.021 1,038,583 5357.851 1,889,136 4342.933 9201.727 9460.883 4476.871 4357.063 7878.394 26,201.78 5529.464 6522.225
worst 3429.127 8,058,357 5938.059 16,032,637 4772.105 488,362.9 24,891.01 5113.016 6672.656 8154.271 64,020.8 5959.869 6842.104
std 559.6669 3,599,997 285.066 7,238,974 230.5594 227,763.7 7565.855 354.7562 1118.696 137.2394 18,218.35 204.2189 146.0004
median 2581.054 2,535,993 5479.492 4,975,004 4561.62 119,666.1 12,740.77 4862.229 5043.015 7979.208 34,117.01 5807.776 6646.838
rank 1 12 5 13 2 11 9 3 4 8 10 6 7
C17-F18 mean 1903.746 49,047,583 2,391,305 86,532,758 221,894 12,535,993 10,102,031 4,147,266 9,226,887 13,629,241 9,895,380 5,430,289 5,095,315
best 1881.15 22,229,584 1,194,868 33,597,693 154,720.5 4,704,257 7,515,295 3,100,094 2,945,821 10,042,328 4,568,763 3,356,167 4,082,969
worst 1919.921 88,697,678 3,786,728 1.58E+08 399,841.5 25,610,542 11,954,144 6,942,446 14,885,570 19,248,180 21,987,153 7,805,783 7,356,158
std 21.08244 30,890,671 1,275,149 57,152,959 129,457.6 10,248,095 2,197,656 2,034,492 5,343,871 4,298,217 8,932,913 2,242,128 1,673,052
median 1906.955 42,631,536 2,291,812 77,153,607 166,507 9,914,588 10,469,342 3,273,261 9,538,078 12,613,229 6,512,802 5,279,603 4,471,066
rank 1 12 3 13 2 10 9 4 7 11 8 6 5
C17-F19 mean 1972.839 1.07E+10 2,450,387 1.88E+10 267,860 4.24E+09 1.13E+08 14,008,315 3.03E+08 5.62E+08 1.33E+09 2.26E+08 10,782,637
best 1967.139 9.42E+09 980,922.2 1.37E+10 56,413.89 1.88E+09 44,711,356 8,206,646 2,441,625 2.44E+08 2.39E+08 37,668,367 5,494,722
worst 1977.869 1.26E+10 4,488,740 2.34E+10 453,682.7 8.42E+09 1.9E+08 22,221,007 9.11E+08 1.29E+09 2.5E+09 4.9E+08 19,497,003
std 4.935585 1.55E+09 1,615,719 4.34E+09 179,384.6 3.15E+09 73,083,332 7,532,410 4.61E+08 5.36E+08 1.23E+09 2.38E+08 6,754,581
median 1973.174 1.04E+10 2,165,944 1.9E+10 280,671.7 3.33E+09 1.08E+08 12,802,803 1.49E+08 3.56E+08 1.28E+09 1.89E+08 9,069,411
rank 1 12 3 13 2 11 6 5 8 9 10 7 4
C17-F20 mean 3192.04 6799.892 5863.746 7013.392 4445.793 6582.15 6592.755 5556.399 5777.929 6765.252 5985.866 5185.77 5944.842
best 2806.762 6627.06 5556.257 6904.666 4389.302 6043.63 6217.504 5281.353 4719.943 6071.329 5603.856 4568.552 5417.463
worst 3662.121 6958.325 6114.165 7084.407 4506.979 7242.068 6913.179 6021.008 6553.599 7070.192 6214.763 5924.889 6361.49
std 477.9749 150.8324 284.3249 83.28669 55.23384 559.0573 333.4967 349.4198 984.7558 507.6215 295.3101 631.4043 486.8695
median 3149.639 6807.092 5892.281 7032.248 4443.445 6521.452 6620.168 5461.617 5919.088 6959.744 6062.424 5124.82 6000.208
rank 1 12 6 13 2 9 10 4 5 11 8 3 7
C17-F21 mean 2342.155 4030.891 3510.961 4134.871 2811.333 3892.34 3978.765 3150.553 2931.257 3545.469 4389.644 3439.937 3302.062
best 2338.689 3985.966 3336.056 4069.352 2768.268 3771.866 3719.434 3096.12 2863.353 3408.401 3921.956 3284.861 3273.431
worst 2346.015 4094.767 3627.267 4177.762 2844.976 3978.86 4179.226 3262.762 2976.534 3695.242 4761.858 3740.055 3339.036
std 3.664912 54.72408 136.7255 52.09297 35.38474 110.7836 222.9256 83.3817 52.53036 132.5194 381.2425 225.2292 30.25229
median 2341.959 4021.415 3540.261 4146.186 2816.044 3909.317 4008.2 3121.666 2942.57 3539.117 4437.381 3367.415 3297.891
rank 1 11 7 12 2 9 10 4 3 8 13 6 5
C17-F22 mean 11,739 29,370.52 19,711.12 30,768.17 18,401.05 28,523.67 27,146.66 17,214.54 22,298.55 30,664.87 20,471.56 21,114.04 26,861.63
best 11,119.08 28,683.13 18,482.81 30,313.72 17,099.57 27,540.69 25,876.73 16,180.59 18,097.38 29,834.73 19,786.44 19,847.43 26,175.5
worst 12,601.6 29,715.62 21,309.93 31,235.73 20,018.39 29,310.11 28,022.86 17,998.21 31,748.26 31,044.72 20,799.05 22,659.88 27,485.86
std 710.0872 506.5825 1319.333 474.8296 1339.001 797.8782 1024.07 902.6408 6997.36 620.0927 504.5512 1302.337 667.1921
median 11,617.67 29,541.65 19,525.86 30,761.61 18,243.11 28,621.94 27,343.52 17,339.67 19,674.28 30,890.02 20,650.37 20,974.44 26,892.59
rank 1 11 4 13 3 10 9 2 7 12 5 6 8
C17-F23 mean 2877.697 5006.271 3970.619 5008.105 3281.804 5108.575 4848.228 3440.536 3553.965 4056.188 7171.538 4611.657 4100.543
best 2872.107 4790.632 3900.775 4778.495 3266.443 4459.054 4729.584 3361.269 3525.424 4009.727 6660.73 4165.789 4042.702
worst 2884.013 5261.75 4047.115 5186.927 3312.206 5991.468 4970.577 3545.696 3592.285 4122.332 7535.123 4845.715 4155.234
std 5.674312 228.9553 74.83691 184.2031 22.41464 745.7664 125.832 85.12362 32.16584 52.00293 429.2467 334.1677 64.93272
median 2877.334 4986.35 3967.293 5033.499 3274.283 4991.889 4846.375 3427.59 3549.076 4046.346 7245.149 4717.562 4102.117
rank 1 10 5 11 2 12 9 3 4 6 13 8 7
C17-F24 mean 3327.407 7801.681 5114.695 9482.038 3703.964 6220.646 5972.339 3919.074 4196.735 4586.681 9749.777 5615.49 5117.215
best 3295.518 6191.278 4921.353 6514.465 3656.964 5795.549 5613.836 3854.929 3986.73 4394.007 9185.954 5302.044 5033.637
worst 3357.991 8900.02 5273.69 11,456.62 3768.186 6501.711 6529.455 4016.905 4376.127 4779.769 11,221.45 6027.595 5258.358
std 32.22323 1409.723 167.7738 2604.444 57.64469 327.8437 435.2487 79.57128 220.1476 172.536 1068.987 354.1205 108.0711
median 3328.059 8057.712 5131.868 9978.536 3695.354 6292.662 5873.032 3902.232 4212.042 4586.474 9295.854 5566.161 5088.433
rank 1 11 6 12 2 10 9 3 4 5 13 8 7
C17-F25 mean 3185.232 13,529.95 4057.362 18,688.73 3670.92 9451.007 6751.414 3434.623 6009.092 8117.186 9926.001 4058.267 7249.185
best 3137.371 12,891.38 3736.27 17,378.7 3498.856 8870.306 6222.759 3357.947 5886.475 7042.655 9174.159 3815.299 6642.467
worst 3261.571 15,038.01 4340.986 21,648.26 3792.464 9824.884 7059.572 3496.658 6333.98 9539.192 11,233.8 4427.694 7851.922
std 65.17161 1103.36 271.7265 2191 134.2336 469.9241 415.3623 62.94,321 236.5814 1237.829 986.7667 318.7455 685.3193
median 3170.992 13,095.21 4076.096 17,863.99 3696.18 9554.419 6861.663 3441.944 5907.958 7943.448 9648.021 3995.038 7251.174
rank 1 12 4 13 3 10 7 2 6 9 11 5 8
C17-F26 mean 5757.621 35,167.72 22,517.65 40,224.61 11,453.1 29,897.3 30,431.15 11,630.83 15,907.27 21,863.98 30,347.8 19,176.1 21,128.3
best 5645.905 34,635.44 20,138.23 37,982.62 10,749.82 28,911.34 27,353.64 10,406.38 14,350.84 18,216.51 29,245.56 17,272.12 19,652.66
worst 5844.642 35,653.47 24,926.9 41,621.02 12,187.39 30,511.54 33,052.29 13,730.92 17,185.39 26,505.71 31,963.87 20,940.26 22,125.46
std 91.29453 453.0954 2255.433 1857.913 771.9566 759.8127 3004.529 1575.844 1323.715 3737.738 1264.799 1698.289 1169.621
median 5769.969 35,190.99 22,502.73 40,647.39 11,437.59 30,083.17 30,659.34 11,193 16,046.42 21,366.86 30,090.88 19,246.01 21,367.54
rank 1 12 8 13 2 9 11 3 4 7 10 5 6
C17-F27 mean 3309.493 8472.462 4065.701 10,998.58 3528.702 6150.218 5640.525 3605.339 3996.688 4207.603 12,507.41 3990.172 5196.33
best 3278.01 7203.499 3921.095 8352.904 3490.261 5886.739 5039.378 3571.895 3854.157 3968.798 12,213.88 3815.176 4971.8
worst 3344.5 9747.033 4311.362 13,743.24 3561.724 6472.084 6305.127 3689.085 4107.092 4605.08 12,737.12 4166.644 5535.875
std 30.85754 1501.857 184.5849 3159.148 32.00686 274.7479 745.8619 61.13918 136.8499 308.7915 258.9872 207.5626 262.3963
median 3307.732 8469.659 4015.173 10,949.09 3531.412 6121.026 5608.799 3580.188 4012.751 4128.266 12,539.32 3989.434 5138.822
rank 1 11 6 12 2 10 9 3 5 7 13 4 8
C17-F28 mean 3322.242 18,389.38 4558.61 24,650.68 3759.304 13,947.47 9399.017 3492.414 8456.179 10,080.85 16,594.61 7067.786 10,348.93
best 3318.742 17,167.17 4302.082 22,119.53 3638.049 11,064.52 8088.89 3423.227 7249.838 7994.173 14,371.5 4945.502 9470.138
worst 3327.816 20,674.35 4735.228 27,803.32 3845.863 16,143.37 10,248.76 3564.13 10,195.47 11,924.7 18,271.02 10,653.51 11,327.38
std 4.767125 1741.216 202.5309 2590.902 95.07424 2644.481 1002.041 62.67904 1354.176 1990.043 1774.385 2826.363 1074.312
median 3321.205 17,858.01 4598.564 24,339.94 3776.653 14,290.99 9629.211 3491.149 8189.702 10,202.27 16,867.96 6336.069 10,299.1
rank 1 12 4 13 3 10 7 2 6 8 11 5 9
C17-F29 mean 4450.696 157,317.8 9139.852 298,621.5 6805.141 16,662.4 15,041.71 8338.592 8016.546 11,529.03 22,196.27 8307.764 11,023.77
best 4169.151 90,006.73 8041.684 160,652.4 6002.795 13,000.42 12,596.71 7548.871 7769.158 10,697.55 18,567.74 7738.827 10,779.1
worst 4829.521 214,340.3 9695.661 414,215.6 7560.201 20,865.25 17,104.72 8887.513 8277.739 12,142.5 28,742.04 8977.924 11,517.96
std 307.1569 57,574.73 814.4624 117,534.7 693.9889 3584.829 2382.752 617.3333 242.3973 662.0945 5174.887 661.4283 366.7167
median 4402.056 162,462.1 9411.032 309,809 6828.783 16,391.97 15,232.7 8458.992 8009.643 11,638.04 20,737.64 8257.153 10,899.02
rank 1 12 6 13 2 10 9 5 3 8 11 4 7
C17-F30 mean 5407.166 1.97E+10 24,130,069 3.21E+10 4,546,185 1.14E+10 1.28E+09 88,083,440 1.56E+09 3.22E+09 6.25E+09 5.15E+08 5.67E+08
best 5337.48 1.73E+10 13,795,207 3E+10 2,025,882 6.93E+09 1.05E+09 54,762,921 6.42E+08 1.21E+09 4.46E+09 1.26E+08 4.73E+08
worst 5557.155 2.14E+10 41,706,015 3.47E+10 7,423,374 1.41E+10 1.73E+09 1.08E+08 2.04E+09 5.97E+09 7.57E+09 1.59E+09 6.07E+08
std 110.0477 1.89E+09 13,513,044 2.21E+09 2,713,659 3.42E+09 3.35E+08 25,767,589 6.85E+08 2.6E+09 1.43E+09 7.84E+08 68,320,415
median 5367.014 2.01E+10 20,509,527 3.18E+10 4,367,742 1.23E+10 1.17E+09 94,878,086 1.78E+09 2.85E+09 6.49E+09 1.7E+08 5.93E+08
rank 1 12 3 13 2 11 7 4 8 9 10 5 6
Sum rank 29 336 140 355 65 293 265 114 156 249 272 162 203
Mean rank 1 11.58621 4.827586 12.24138 2.241379 10.10345 9.137931 3.931034 5.37931 8.586207 9.37931 5.586207 7
Total rank 1 12 4 13 2 11 9 3 5 8 10 6 7

Figure 3.

Figure 3

Figure 3

Boxplot diagrams of GAO and competitor algorithms’ performances on the CEC 2017 test suite (dimension = 10).

Figure 4.

Figure 4

Figure 4

Boxplot diagrams of GAO and competitor algorithms’ performances on the CEC 2017 test suite (dimension = 30).

Figure 5.

Figure 5

Figure 5

Boxplot diagrams of GAO and competitor algorithms’ performances on the CEC 2017 test suite (dimension = 50).

Figure 6.

Figure 6

Figure 6

Boxplot diagrams of GAO and competitor algorithms’ performances on the CEC 2017 test suite (dimension = 100).

Based on the analysis of the simulation results, the proposed GAO approach in handling the CEC 2017 test suite, for problem dimensions equal to 10 (m = 10), is the first best optimizer for functions C17-F1, C17-F3 to C17-F21, C17-F23, C17-F24, and C17-F27 to C17-F30 (i.e., 26 functions from 29 functions). Therefore, for problem dimensions equal to 10 (m = 10), GAO has been the first best optimizer in 26 out of 29 functions (i.e., 89.65% of test functions) and has provided superior performance compared to competing algorithms.

For problem dimensions equal to 30 (m = 30), the proposed GAO approach is the first best optimizer for functions C17-F1, C17-F3 to C17-F22, C17-F24, C17-F25, and C17-F27 to C17-F30. Therefore, for problem dimensions equal to 30 (m = 30), GAO has been the best optimizer in 27 out of 29 functions (i.e., 93.10% of test functions) and has provided superior performance compared to competing algorithms.

For problem dimensions equal to 50 (m = 50), the proposed GAO approach is the first best optimizer for functions C17-F1, C17-F3 to C17-F25, and C17-F27 to C17-F30. Therefore, for problem dimensions equal to 50 (m = 50), GAO has been the best optimizer in 28 out of 29 functions (i.e., 96.55% of test functions) and has provided superior performance compared to competing algorithms.

For problem dimensions equal to 100 (m = 100), the proposed GAO approach is the first best optimizer for functions C17-F1, C17-F3, and C17-F30. Therefore, for problem dimensions equal to 100 (m = 100), GAO has been the first best optimizer in 29 out of 29 functions (i.e., 100% of test functions) and has provided superior performance compared to competing algorithms.

The optimization results show that the proposed GAO approach has achieved good results for the benchmark functions, with high abilities in exploration, exploitation, and balance during the search process. What is clear from the simulation results is that GAO has provided superior performance by providing better results for most benchmark functions compared to competitor algorithms in dealing with the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100.

4.3. Statistical Analysis

In this subsection, using statistical analysis of the obtained results, it has been checked whether the superiority of the proposed GAO approach is significant from a statistical point of view or not. For this purpose, the Wilcoxon rank sum test [88] is employed, which is a non-parametric test and is used to determine the significant difference between the means of two data samples. In the Wilcoxon rank sum test, the presence or absence of a statistically significant difference is determined using an index called the p-value. The implementation results of the Wilcoxon rank sum test statistical analysis on the performance of GAO against each of the competitor algorithms are reported in Table 5. Based on the obtained results, in cases where the p-value is less than 0.05, GAO has a statistically significant superiority compared to the corresponding competitor algorithm. Statistical analysis shows that GAO has a significant statistical superiority in handling the CEC 2017 test suite for all four dimensions of the problem, equal to 10, 30, 50, and 100, in competition with all twelve compared algorithms.

Table 5.

Wilcoxon rank sum test results.

Compared Algorithm Objective Function Type
CEC 2017
D = 10 D = 30 D = 50 D = 100
GAO vs. WSO 2.58E−34 2.58E−34 2.58E−34 2.58E−34
GAO vs. AVOA 3.03E−25 4.23E−21 2.58E−34 2.58E−34
GAO vs. RSA 2.58E−34 2.58E−34 2.58E−34 2.58E−34
GAO vs. MPA 1.61E−29 5.26E−16 8.68E−31 2.58E−34
GAO vs. TSA 7.63E−34 2.58E−34 2.58E−34 2.58E−34
GAO vs. WOA 7.63E−34 2.58E−34 2.58E−34 2.58E−34
GAO vs. MVO 6.08E−26 7.11E−21 2.58E−34 2.58E−34
GAO vs. GWO 8.19E−32 2.58E−34 2.58E−34 2.58E−34
GAO vs. TLBO 2.97E−32 2.58E−34 2.58E−34 2.58E−34
GAO vs. GSA 1.29E−27 6.21E−21 2.58E−34 2.58E−34
GAO vs. PSO 6.24E−28 1.89E−21 2.58E−34 2.58E−34
GAO vs. GA 5.17E−28 2.58E−34 2.58E−34 2.58E−34

5. GAO for Real-World Applications

In this section, the effectiveness of the proposed GAO approach in solving optimization problems in real-world applications is evaluated. For this purpose, twenty-two constrained optimization problems from the CEC 2011 test suite and four engineering design problems are selected.

5.1. Evaluation of the CEC 2011 Test Suite

In this subsection, the performance of GAO and competitor algorithms in handling the CEC 2011 test suite has been tested. The CEC 2011 test suite consists of twenty-two constrained optimization problems from real-world applications. A full description and more details about the CEC 2011 test suite are available at [89].

The results of employing GAO and competitor algorithms to deal with the CEC 2011 test suite are reported in Table 6. The boxplot diagrams obtained from the performance of metaheuristic algorithms in this experiment are plotted in Figure 7. The optimization results show that the proposed GAO approach, with its high ability to explore, exploit, and balance them during the search process, has been able to provide suitable solutions for optimization problems. What is concluded from the comparison of the simulation results is that GAO has provided superior performance in handling the CEC 2011 test suite against competitor algorithms by providing better results for most of the benchmark functions and obtaining the rank of the first-best optimizer overall. Also, the results obtained from the Wilcoxon rank sum test indicate the statistically significant superiority of GAO compared to all twelve competitor algorithms in order to solve the CEC 2011 test suite.

Table 6.

Optimization results of the CEC 2011 test suite.

GAO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C11-F1 mean 5.920103 16.74641 12.47935 20.60699 7.613273 17.40635 12.74259 13.42229 10.58714 17.43517 20.35526 16.99013 21.88339
best 2E−10 13.86501 8.478707 18.18457 0.380987 16.50584 7.451926 11.38898 1.050147 16.64263 17.71226 10.14258 20.69375
worst 12.30606 19.6453 16.37007 23.21547 12.69538 19.05236 16.77422 15.48484 16.38551 18.69533 22.1194 23.16349 24.33594
std 7.476538 3.058894 4.906722 2.611096 6.161367 1.264455 4.734219 2.406333 7.278318 1.063321 2.051999 6.277694 1.854985
median 5.687176 16.73766 12.53432 20.51396 8.688362 17.03359 13.37211 13.40768 12.45645 17.20137 20.79468 17.32722 21.25194
rank 1 7 4 12 2 9 5 6 3 10 11 8 13
C11-F2 mean −26.3179 −15.5172 −21.4594 −13.0022 −25.0711 −12.7516 −19.2977 −10.5326 −22.8812 −12.4007 −16.5475 −22.9249 −14.2156
best −27.0676 −16.7338 −22.0088 −13.416 −25.7089 −16.1048 −22.3643 −12.4163 −24.773 −13.5327 −21.127 −24.2021 −16.3132
worst −25.4328 −14.5198 −20.8937 −12.6713 −23.7335 −10.8719 −15.8013 −9.00571 −19.5197 −11.4832 −12.7537 −20.8714 −12.7783
std 0.767703 1.191398 0.561161 0.413033 1.005704 2.689933 3.636791 1.601866 2.551853 0.95683 4.12006 1.566969 1.883805
median −26.3856 −15.4077 −21.4675 −12.9608 −25.421 −12.0149 −19.5127 −10.3543 −23.616 −12.2934 −16.1546 −23.313 −13.8855
rank 1 8 5 10 2 11 6 13 4 12 7 3 9
C11-F4 mean 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05
best 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05
worst 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05
std 2.08E−19 2.03E−11 2.33E−09 4.57E−11 1.3E−15 2.17E−14 1.58E−16 9.12E−13 3.57E−15 7.19E−14 1.58E−16 1.58E−16 1.58E−16
median 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05
rank 1 11 13 12 6 8 4 10 7 9 3 2 5
C11-F4 mean 0 0 0 0 0 0 0 0 0 0 0 0 0
best 0 0 0 0 0 0 0 0 0 0 0 0 0
worst 0 0 0 0 0 0 0 0 0 0 0 0 0
std 0 0 0 0 0 0 0 0 0 0 0 0 0
median 0 0 0 0 0 0 0 0 0 0 0 0 0
rank 1 1 1 1 1 1 1 1 1 1 1 1 1
C11-F5 mean −34.1274 −25.7765 −28.7022 −21.4775 −33.271 −27.837 −28.2791 −27.7131 −31.7667 −13.3239 −28.0292 −11.4033 −12.1662
best −34.7494 −26.8331 −29.7227 −23.4213 −33.8557 −31.7971 −28.4609 −31.7451 −34.1148 −15.2637 −31.5688 −14.3978 −13.2792
worst −33.3862 −24.7915 −28.1294 −19.226 −31.9367 −23.1816 −27.9722 −25.5891 −28.0378 −11.9458 −25.2806 −9.92524 −10.7534
std 0.612958 0.950695 0.77194 2.38908 0.977388 3.870035 0.250642 3.142491 2.849728 1.541204 3.011529 2.295861 1.2422
median −34.1871 −25.7407 −28.4783 −21.6314 −33.6458 −28.1847 −28.3416 −26.7591 −32.4571 −13.043 −27.6336 −10.6451 −12.3162
rank 1 9 4 10 2 7 5 8 3 11 6 13 12
C11-F6 mean −24.1119 −15.0062 −19.4362 −14.1244 −22.6084 −9.25983 −20.2537 −11.008 −19.9677 −4.61236 −21.9655 −5.38056 −6.18492
best −27.4298 −15.3693 −21.0438 −14.6552 −25.7439 −17.0765 −22.8753 −17.9544 −22.7828 −5.25001 −25.9902 −8.32281 −10.6604
worst −23.0059 −14.6561 −17.7919 −13.074 −21.3201 −6.21322 −13.9021 −4.37018 −18.359 −4.37018 −18.7012 −4.37018 −4.37018
std 2.415463 0.362766 1.575989 0.780164 2.313354 5.723676 4.671589 7.853513 2.296056 0.466472 3.484428 2.142492 3.286726
median −23.0059 −14.9997 −19.4545 −14.3841 −21.6849 −6.87477 −22.1187 −10.8537 −19.3646 −4.41462 −21.5854 −4.41462 −4.85453
rank 1 7 6 8 2 10 4 9 5 13 3 12 11
C11-F7 mean 0.860699 1.525865 1.242141 1.802371 0.929865 1.257862 1.647066 0.887071 1.051349 1.625096 1.061967 1.100668 1.644276
best 0.582266 1.451887 1.112942 1.598764 0.757869 1.085156 1.552518 0.840735 0.831043 1.466068 0.86985 0.853582 1.279595
worst 1.025027 1.625584 1.376489 1.968587 1.011582 1.588703 1.802521 0.960573 1.258512 1.753067 1.246812 1.322056 1.83421
std 0.219737 0.080974 0.155593 0.166559 0.127917 0.245827 0.117904 0.061752 0.190899 0.139933 0.185054 0.257758 0.274052
median 0.91775 1.512994 1.239567 1.821066 0.975005 1.178795 1.616613 0.873488 1.057921 1.640626 1.065602 1.113517 1.731649
rank 1 9 7 13 3 8 12 2 4 10 5 6 11
C11-F8 mean 220 277.756 238.4052 313.4897 222.463 253.2859 261.0367 223.905 226.789 223.905 243.6012 440.9517 222.5031
best 220 254.6314 223.8045 277.5593 220 220 242.3511 220 220 220 220 245.4346 220
worst 220 308.7868 253.606 352.6647 224.926 339.5656 302.0734 234.4201 233.5781 235.0201 285.4904 530.1433 229.4123
std 0 25.96257 14.00974 33.66547 3.105763 63.2005 30.12558 7.661323 8.560688 8.097811 33.93451 146.9772 5.039474
median 220 273.8029 238.1052 311.8675 222.463 226.789 249.8612 220.6 226.789 220.3 234.4572 494.1144 220.3
rank 1 10 6 11 2 8 9 4 5 4 7 12 3
C11-F9 mean 8789.286 495,628.6 337,304.8 942,375.5 20,289.66 61,028.87 334,059.8 120,463.1 40,488.79 364,116.3 731,137.6 960,487.9 1,721,875
best 5457.674 332,586 299,628.8 616,714.2 11,047.41 45,559.44 184,837.1 68,871.61 17,607.44 301,247 626,497.6 770,332.1 1,650,717
worst 14,042.29 570,171.3 361,787 1,106,235 28,881.93 76,423.83 563,855.9 181,648.1 70,024.01 466,965.3 785,786.6 1,176,387 1,822,159
std 4040.59 121,883.4 29,840.72 241,894.9 8616.991 14,638 188,476.8 50,889.21 24,188.06 79,408.16 77,704.14 237,012.5 91,820.42
median 7828.591 539,878.5 343,901.7 1,023,277 20,614.66 61,066.11 293,773.2 115,666.3 37,161.85 344,126.5 756,133.1 947,616.3 1,707,313
rank 1 9 7 11 2 4 6 5 3 8 10 12 13
C11-F10 mean −21.4889 −14.5416 −17.1501 −13.0457 −19.0113 −14.9125 −13.5714 −15.1881 −14.6597 −12.1691 −13.8193 −12.2573 −11.996
best −21.8299 −15.5735 −17.3545 −13.4342 −19.4012 −18.8263 −14.1193 −20.9515 −15.1354 −12.2888 −14.3188 −12.3375 −12.0839
worst −20.7878 −14.0389 −16.7705 −12.8424 −18.6173 −12.8716 −13.1807 −12.2848 −13.5969 −12.0396 −13.0951 −12.1735 −11.8831
std 0.518028 0.764494 0.297295 0.297232 0.43758 2.932237 0.430196 4.264594 0.7905 0.126608 0.657859 0.080422 0.094638
median −21.669 −14.277 −17.2377 −12.9532 −19.0134 −13.976 −13.4928 −13.7581 −14.9532 −12.1739 −13.9316 −12.2591 −12.0085
rank 1 7 3 10 2 5 9 4 6 12 8 11 13
C11-F11 mean 571,712.3 5,328,958 1,075,534 8,031,460 1,666,015 5,454,829 1,273,865 1,355,976 3,588,035 4,805,107 1,446,911 4,814,899 5,612,143
best 260,837.9 5,076,905 873,531.3 7,760,848 1,551,469 4,560,614 1,162,788 748,605.8 3,403,937 4,770,608 1,304,077 4,785,378 5,565,110
worst 828,560.9 5,661,658 1,250,006 8,214,168 1,800,123 6,560,319 1,431,883 2,601,629 3,895,613 4,841,240 1,610,216 4,842,787 5,662,076
std 271,080 298,039 180,691.1 209,754.4 130,844.8 901,463.8 125,636.6 918,912.5 233,276 35,734.2 137,640.7 34,263.64 45,115.52
median 598,725.2 5,288,634 1,089,299 8,075,412 1,656,234 5,349,191 1,250,395 1,036,835 3,526,294 4,804,290 1,436,677 4,815,717 5,610,694
rank 1 10 2 13 6 11 3 4 7 8 5 9 12
C11-F12 mean 1,199,805 7,565,001 3,131,984 11,847,407 1,275,035 4,593,958 5,288,069 1,321,780 1,407,168 12,813,481 5,265,826 2,193,624 12,955,713
best 1,155,937 7,249,457 3,037,655 11,005,819 1,199,042 4,365,138 4,921,550 1,191,166 1,253,032 12,079,057 5,013,496 2,052,641 12,839,240
worst 1,249,353 7,846,572 3,201,406 12,588,956 1,354,436 4,711,793 5,463,430 1,445,492 1,539,003 13,381,134 5,440,440 2,374,365 13,075,086
std 48,993.46 269,902.4 77,934.33 709,107.4 74,270.29 176,865.1 274,490.1 114,079 129,661.2 596,428.5 201,014.3 145,668.3 105,930.4
median 1,196,965 7,581,987 3,144,437 11,897,426 1,273,331 4,649,451 5,383,648 1,325,231 1,418,318 12,896,866 5,304,684 2,173,745 12,954,263
rank 1 10 6 11 2 7 9 3 4 12 8 5 13
C11-F13 mean 15,444.2 15,812.19 15,449.88 16,212.57 15,463.3 15,487.2 15,527.25 15,502.86 15,496.86 15,879.01 115,295.8 15,487.77 28,322.83
best 15,444.19 15,647.84 15,448.97 15,844.33 15,460.98 15,478.15 15,489.1 15,485.46 15,490.45 15,608.37 83,844.39 15,472.25 15,460.73
worst 15,444.21 16,210.14 15,450.58 17,127.49 15,467.32 15,498.33 15,579.17 15,536.74 15,507.94 16,377.02 157,954.9 15,520.56 66,597.52
std 0.009445 292.5405 0.736869 671.5627 3.070858 10.66753 45.92712 26.08555 8.466667 379.7534 36,436.54 24.13568 27,864.62
median 15,444.2 15,695.38 15,449.99 15,939.23 15,462.46 15,486.17 15,520.37 15,494.63 15,494.52 15,765.32 109,691.9 15,479.13 15,616.53
rank 1 9 2 11 3 4 8 7 6 10 13 5 12
C11-F14 mean 18,295.35 101,653.8 18,531.86 204,818.7 18,610.08 19,427.05 19,156.72 19,328.03 19,162.86 277,104.2 19,039.05 19,067.85 19,056.56
best 18,241.58 77,844.33 18,433.29 151,402.6 18,525.09 19,197.39 19,010.34 19,228.27 19,023.04 28,919.66 18,780.81 18,920.4 18,802.38
worst 18,388.08 141,318.6 18,627.71 294,218.2 18,686.26 19,915.98 19,266.53 19,403.53 19,330.36 532,867 19,214.64 19,206.21 19,324.98
std 74.38679 31,002.63 100.4132 69,857.14 75.5763 359.6829 130.2265 82.13068 148.4293 264,198.4 207.9666 127.972 233.6991
median 18,275.87 93,726.14 18,533.22 186,827.1 18,614.48 19,297.4 19,175 19,340.15 19,149.02 273,315.1 19,080.37 19,072.4 19,049.45
rank 1 11 2 12 3 10 7 9 8 13 4 6 5
C11-F15 mean 32,883.58 807,662.7 99,246.56 1,698,853 32,948.86 52,073.78 197,302.8 33,083.1 33,063.51 13,654,593 269,150.9 33,249.55 7,029,271
best 32,782.17 335,111.3 42,006.57 712,650.2 32,870.55 33,044.86 32,994.05 32,999.45 33,025.79 2,864,102 238,633.6 33,238.56 3,201,535
worst 32,956.46 2,025,189 163,300.4 4,428,557 33,019.16 108,933.8 280,775.5 33,136.06 33,129.28 20,360,257 290,038.3 33,267.85 12,044,118
std 79.94256 889,583.9 71,193.56 1,990,353 66.4763 41,394.96 122,156.8 65.47578 51.66162 8,687,568 26,115.39 14.21884 4,427,529
median 32,897.86 435,175.2 95,839.63 827,102.2 32,952.87 33,158.25 237,720.8 33,098.45 33,049.48 15,697,006 273,965.9 33,245.9 6,435,715
rank 1 10 7 11 2 6 8 4 3 13 9 5 12
C11-F16 mean 133,550 852,515.9 135,494.4 1,741,395 137,689.9 144,300.8 141,678.2 141,363.5 144,961.1 78,713,310 16,589,469 70,453,795 67,648,001
best 131,374.2 271,555.2 133,906.1 435,162.3 135,606.9 141,665.4 136,481.6 133,721.9 142,697.5 76,704,271 8,433,558 58,281,367 54,676,847
worst 136,310.8 1,992,858 136,234.8 4,304,701 141,382.2 145,887.3 146,823.4 148,906.5 150,289.6 80,979,120 30,001,092 84,187,611 86,522,477
std 2485.329 845,493.3 1168.748 1,900,510 2815.212 2202.366 4704.048 6908.098 3912.739 1,956,382 10,183,919 12,193,902 14,772,336
median 133,257.5 572,825.3 135,918.4 1,112,859 136,885.2 144,825.3 141,703.9 141,412.9 143,428.7 78,584,925 13,961,613 69,673,101 64,696,339
rank 1 8 2 9 3 6 5 4 7 13 10 12 11
C11-F17 mean 1,926,615 7.93E+09 2.05E+09 1.37E+10 2,293,861 1.13E+09 8.58E+09 3,020,765 2,938,888 1.98E+10 9.93E+09 1.84E+10 1.94E+10
best 1,916,953 6.76E+09 1.86E+09 9.87E+09 1,957,675 9.36E+08 6.12E+09 2,291,610 2,029,200 1.9E+10 8.73E+09 1.63E+10 1.81E+10
worst 1,942,685 8.8E+09 2.24E+09 1.68E+10 2,915,059 1.3E+09 1.14E+10 3,551,652 4,662,207 2.06E+10 1.05E+10 2.13E+10 2.19E+10
std 12,470.83 9.84E+08 1.83E+08 3.25E+09 468,908.4 2.03E+08 2.43E+09 620,050.3 1,295,060 7.28E+08 8.83E+08 2.49E+09 1.87E+09
median 1,923,412 8.09E+09 2.05E+09 1.41E+10 2,151,356 1.15E+09 8.4E+09 3,119,900 2,532,073 1.97E+10 1.02E+10 1.81E+10 1.87E+10
rank 1 7 6 10 2 5 8 4 3 13 9 11 12
C11-F18 mean 942,057.5 48,788,595 5,915,000 1.05E+08 971,984.9 1,926,661 8,592,280 986,474.2 1,024,549 27,556,574 9,963,062 1.2E+08 1.02E+08
best 938,416.2 33,587,280 3,598,584 72,496,984 949,866.2 1,696,441 3,757,481 972,178.6 965,175.1 21,861,781 7,461,469 1E+08 97,794,840
worst 944,706.9 55,479,310 10,072,337 1.2E+08 1,030,674 2,227,417 15,006,887 993,724.5 1,181,666 29,806,868 12,546,238 1.33E+08 1.05E+08
std 2882.138 11,196,197 3,292,143 24,174,063 42,861.31 277,004.9 5,187,569 10,717.17 114,623.8 4,163,281 2,480,176 15,806,321 3,328,144
median 942,553.5 53,043,894 4,994,539 1.14E+08 953,699.6 1,891,392 7,802,376 989,996.7 975,677.3 29,278,824 9,922,270 1.23E+08 1.02E+08
rank 1 10 6 12 2 5 7 3 4 9 8 13 11
C11-F19 mean 1,025,341 48,045,429 6,024,330 1.03E+08 1,138,731 2,312,239 9,177,497 1,438,696 1,337,888 31,640,166 5,679,788 1.53E+08 1.02E+08
best 967,927.7 41,007,057 5,529,035 88,789,545 1,068,540 2,091,831 1,949,236 1,124,620 1,214,014 22,188,480 2,262,615 1.39E+08 99,335,591
worst 1,167,142 61,046,693 7,266,048 1.29E+08 1,293,909 2,700,255 16,514,231 1,862,140 1,516,560 39,430,521 7,413,240 1.77E+08 1.05E+08
std 103,555.5 9,868,988 909,126.9 20,540,250 114,017.5 291,364.9 7,492,785 336,266.6 139,372.1 8,153,343 2,551,795 18,022,451 2,504,883
median 983,146.6 45,063,983 5,651,119 96,595,837 1,096,237 2,228,435 9,123,261 1,384,012 1,310,489 32,470,832 6,521,648 1.48E+08 1.02E+08
rank 1 10 7 12 2 5 8 4 3 9 6 13 11
C11-F20 mean 941,250.4 51,056,364 5,326,862 1.11E+08 960,500.6 1,727,330 6,556,181 971,537.3 994,311.4 30,716,418 12,744,216 1.41E+08 1.02E+08
best 936,143.2 44,933,180 4,709,950 97,107,724 957,168.3 1,564,565 6,183,561 962,742.4 975,262.1 30,044,795 8,502,443 1.29E+08 97,262,940
worst 946,866.6 60,440,462 5,986,883 1.32E+08 962,608 1,997,607 7,053,710 981,674.9 1,009,090 31,442,402 19,667,237 1.53E+08 1.06E+08
std 5208.733 7,215,894 578,753.3 16,195,092 2558.588 224,547 406,329.4 9206.801 15,914.84 634,789.9 5,328,269 14,753,402 3,998,704
median 940,995.9 49,425,907 5,305,307 1.07E+08 961,113 1,673,574 6,493,726 970,866 996,446.5 30,689,238 11,403,593 1.41E+08 1.03E+08
rank 1 10 6 12 2 5 7 3 4 9 8 13 11
C11-F21 mean 12.71443 46.34686 21.01723 69.56401 15.96249 28.26275 36.20316 26.2373 21.66735 91.01918 37.89568 95.47795 92.70667
best 9.974206 38.73143 19.57825 52.49434 13.78985 25.13662 33.54273 23.43905 19.92905 44.78771 33.83682 82.90208 54.02514
worst 14.97499 54.54122 22.89874 86.63233 18.25234 29.53126 39.5914 29.18722 24.00863 133.0501 40.61476 105.7638 112.5417
std 2.506594 7.425814 1.558182 16.45118 2.263924 2.29002 2.912469 3.413229 2.014941 39.49753 3.257039 12.46174 29.75296
median 12.95425 46.0574 20.79597 69.5647 15.90388 29.19156 35.83926 26.16147 21.36585 93.11946 38.56558 96.62294 102.1299
rank 1 9 3 10 2 6 7 5 4 11 8 13 12
C11-F22 mean 5.920103 16.74641 12.47935 20.60699 7.613273 17.40635 12.74259 13.42229 10.58714 17.43517 20.35526 16.99013 21.88339
best 2E−10 13.86501 8.478707 18.18457 0.380987 16.50584 7.451926 11.38898 1.050147 16.64263 17.71226 10.14258 20.69375
worst 12.30606 19.6453 16.37007 23.21547 12.69538 19.05236 16.77422 15.48484 16.38551 18.69533 22.1194 23.16349 24.33594
std 7.476538 3.058894 4.906722 2.611096 6.161367 1.264455 4.734219 2.406333 7.278318 1.063321 2.051999 6.277694 1.854985
median 5.687176 16.73766 12.53432 20.51396 8.688362 17.03359 13.37211 13.40768 12.45645 17.20137 20.79468 17.32722 21.25194
rank 1 7 4 12 2 9 5 6 3 10 11 8 13
Sum rank 22 191 109 231 55 146 145 118 97 222 157 198 224
Mean rank 1 8.681818 4.954545 10.5 2.5 6.636364 6.590909 5.363636 4.409091 10.09091 7.136364 9 10.18182
Total rank 1 2 12 4 13 3 11 9 6 7 10 5 8
Wilcoxon: p-value 1.58E−15 9.00E−15 1.58E−15 6.54E−15 3.37E−15 1.58E−15 3.68E−12 6.54E−15 4.94E−15 7.85E−15 2.34E−15 4.94E−15

Figure 7.

Figure 7

Figure 7

Boxplot diagrams of GAO and competitor algorithms’ performances on the CEC 2011 test suite.

5.2. Pressure Vessel Design Problem

Pressure vessel design is a real-world engineering challenge with the aim of minimizing construction costs. The schematic of this design is shown in Figure 8, and its mathematical model is as follows [90]:

Figure 8.

Figure 8

Schematic of pressure vessel design.

Consider: X=[x1, x2, x3, x4]=[Ts, Th, R, L].

Minimize: f(x)=0.6224x1x3x4+1.778x2x32+3.1661x12x4+19.84x12x3.

Subject to:

g1(x)=x1+0.0193x3  0,  g2(x)=x2+0.00954x3  0,
g3(x)=πx32x443πx33+1296,000  0,  g4(x)=x4240  0.

With

0x1,x2100 and 10x3,x4200.

The implementation results of the GAO and competitor algorithms on the Pressure vessel design problem are reported in Table 7 and Table 8. The convergence curve of GAO while achieving the optimal solution for pressure vessel design is drawn in Figure 9. Based on the optimization results, GAO has determined the optimal design for the pressure vessel with the values of the design variables equal to (0.7780271, 0.3845792, 40.312284, and 200) and the value of the objective function equal to (5882.8955). The simulation results show that GAO has provided superior performance in dealing with the pressure vessel design problem by providing better results compared to competitor algorithms.

Table 7.

Performance of optimization algorithms on pressure vessel design problem.

Algorithm Optimum Variables Optimum Cost
Ts Th R L
GAO 0.7780271 0.3845792 40.312284 200 5882.8955
WSO 0.7780269 0.3845797 40.312282 200 5882.9013
AVOA 0.7780308 0.384581 40.312476 199.99732 5882.9077
RSA 1.1950157 0.64038 60.549321 48.031984 7759.8234
MPA 0.7780271 0.3845792 40.312284 200 5882.9013
TSA 0.7794994 0.385819 40.386517 200 5909.3749
WOA 0.911517 0.4510723 46.230782 133.83941 6270.8621
MVO 0.8344267 0.4164052 43.217775 163.90679 6003.8497
GWO 0.7784599 0.3858127 40.320627 199.96442 5890.2105
TLBO 1.5622593 0.4813024 47.695987 124.64823 10,807.366
GSA 1.1300127 1.1576349 44.110061 190.7876 11,984.417
PSO 1.55006 0.6231249 63.139483 49.78495 9998.6395
GA 1.406417 0.7832762 58.253368 73.964478 10,920.286

Table 8.

Statistical results of optimization algorithms on pressure vessel design problem.

Algorithm Mean Best Worst Std Median Rank
GAO 5882.8955 5882.8955 5882.8955 1.87E−12 5882.8955 1
WSO 5891.226 5882.9013 5965.0365 22.218932 5882.9017 3
AVOA 6219.5386 5882.9077 7046.3206 352.35848 6047.6955 5
RSA 12,409.586 7759.8234 19,991.769 3127.065 11,403.338 9
MPA 5882.9013 5882.9013 5882.9013 3.68E−06 5882.9013 2
TSA 6271.132 5909.3749 6948.3792 333.1584 6143.6153 6
WOA 7998.6372 6270.8621 12,805.388 1681.8974 7579.6333 8
MVO 6518.1019 6003.8497 7050.4059 320.31898 6572.19 7
GWO 6012.3675 5890.2105 6670.9945 239.38549 5898.5494 4
TLBO 28,273.334 10,807.366 60,311.64 13,795.65 24,975.491 12
GSA 20,643.589 11,984.417 32,105.445 6711.6675 19,830.394 10
PSO 29,687.575 9998.6395 50,712.307 12,915.318 32,709.339 13
GA 25,427.766 10,920.286 45,530.922 10,828.815 22,551.255 11

Figure 9.

Figure 9

GAOs performance convergence curve on pressure vessel design.

5.3. Speed Reducer Design Problem

Speed reducer design is a real-world engineering challenge with the aim of minimizing the weight of the speed reducer. The schematic of this design is shown in Figure 10, and its mathematical model is as follows [91,92]:

Figure 10.

Figure 10

Schematic of speed reducer design.

Consider: X=[x1, x2, x3, x4, x5 ,x6 ,x7]=[b, m, p, l1, l2, d1, d2].

Minimize: f(x)=0.7854x1x22(3.3333x32+14.9334x343.0934)1.508x1(x62+x72)+7.4777(x63+x73)+0.7854(x4x62+x5x72).

Subject to: 

g1(x)=27x1x22x31  0,   g2(x)=397.5x1x22x31  0,
g3(x)=1.93x43x2x3x641  0,   g4(x)=1.93x53x2x3x741  0,
g5(x)=1110x63(745x4x2x3)2+16.9×1061  0,
g6(x)=185x73(745x5x2x3)2+157.5×1061  0,
g7(x)=x2x3401  0,   g8(x)=5x2x11  0,
g9(x)=x112x21  0,   g10(x)=1.5x6+1.9x41  0,
g11(x)=1.1x7+1.9x51  0.

With

2.6x13.6, 0.7x20.8, 17x328, 7.3x48.3, 7.8x58.3, 2.9x63.9, and 5x75.5.

The results of employing GAO and competitor algorithms to solve the speed reducer design problem are reported in Table 9 and Table 10. The convergence curve of GAO towards the optimal solution for speed reducer design is drawn in Figure 11. Based on the optimization results, GAO has provided the optimal design for the speed reducer with the values of the design variables equal to (3.5, 0.7, 17, 7.3, 7.8, 3.3502147, and 5.2866832) and the value of the objective function equal to (2996.3482). Analysis of the simulation results indicates that GAO has provided superior performance by achieving better results in order to solve the problem of speed reducer design compared to competitor algorithms.

Table 9.

Performance of optimization algorithms on speed reducer design problem.

Algorithm Optimum Variables Optimum Cost
b M p l 1 l 2 d 1 d 2
GAO 3.5 0.7 17 7.3 7.8 3.3502147 5.2866832 2996.3482
WSO 3.5000004 0.7 17 7.3000087 7.8000004 3.3502148 5.2866833 2996.3483
AVOA 3.5 0.7 17 7.3000007 7.8 3.3502147 5.2866832 2996.3482
RSA 3.5812009 0.7 17 8.1120092 8.2060046 3.3550151 5.4598984 3160.6387
MPA 3.5 0.7 17 7.3 7.8 3.3502147 5.2866832 2996.3482
TSA 3.5113634 0.7 17 7.3 8.2060046 3.3505018 5.2897957 3011.7899
WOA 3.5770618 0.7 17 7.3 7.9844181 3.3602552 5.2867471 3033.2634
MVO 3.5019838 0.7 17 7.3 8.0370241 3.3672881 5.2868582 3006.8197
GWO 3.5005649 0.7 17 7.3045311 7.8 3.3623131 5.2885569 3000.8991
TLBO 3.549421 0.7035216 25.214085 8.0060043 8.1041201 3.6261576 5.3330891 4999.6584
GSA 3.5201835 0.7024256 17.325213 7.7585847 7.8789461 3.4018063 5.374124 3149.0914
PSO 3.5072099 0.7000634 17.965269 7.3872523 7.8599345 3.566267 5.3372001 3266.1003
GA 3.5687302 0.7049031 17.716975 7.6899131 7.8491985 3.65975 5.3392351 3305.1452

Table 10.

Statistical results of optimization algorithms on speed reducer design problem.

Algorithm Mean Best Worst Std Median Rank
GAO 2996.3482 2996.3482 2996.3482 9.33E−13 2996.3482 1
WSO 2996.5979 2996.3483 2998.5076 0.515253 2996.3624 3
AVOA 3000.3195 2996.3482 3009.3227 3.495813 3000.2318 4
RSA 3243.4118 3160.6387 3294.782 50.671452 3256.5192 9
MPA 2996.3482 2996.3482 2996.3482 2.81E−06 2996.3482 2
TSA 3027.8743 3011.7899 3039.9713 8.9331108 3029.4495 7
WOA 3131.7628 3033.2634 3391.7111 93.64881 3102.3919 8
MVO 3025.8394 3006.8197 3061.3925 11.679823 3026.2269 6
GWO 3003.637 3000.8991 3008.8921 2.2089208 3003.1807 5
TLBO 6.128E+13 4999.6584 4.435E+14 1.02E+14 2.4E+13 12
GSA 3400.1113 3149.0914 3947.2386 231.00301 3285.8903 10
PSO 9.044E+13 3266.1003 4.581E+14 1.092E+14 6.468E+13 13
GA 4.354E+13 3305.145 2.81E+14 6.859E+13 1.745E+13 11

Figure 11.

Figure 11

GAOs performance convergence curve on speed reducer design.

5.4. Welded Beam Design

Welded beam design is a real-world engineering challenge with the aim of minimizing the fabrication cost of the welded beam. The schematic of this design is shown in Figure 12, and its mathematical model is as follows [25]:

Figure 12.

Figure 12

Schematic of welded beam design.

Consider: X=[x1, x2, x3, x4]=[h, l, t, b].

Minimize: f(x)=1.10471x12x2+0.04811x3x4 (14.0+x2).

Subject to:

g1(x)=τ(x)13,600  0,  g2(x)=σ(x)30,000  0,
g3(x)=x1x4  0,  g4(x)=0.10471x12+0.04811x3x4 (14+x2)5.0  0,
g5(x)=0.125x1  0,  g6(x)=δ (x)0.25  0,
g7(x)=6000pc (x)  0.

where

τ(x)=(τ)2+(2ττ)x22R+(τ)2 ,  τ=60002x1x2,  τ=MRJ,
M=6000(14+x22),  R=x224+(x1+x32)2,
J=2{x1x22[x2212+(x1+x32)2]},   σ(x)=504,000x4x32 
δ (x)=65,856,000(30·106)x4x33,  pc (x)=4.013(30·106)x32x4636196(1x32830·1064(12·106)).

With

0.1x1, x42   and 0.1x2, x310.

The results of dealing with the problem of welded beam design using GAO and competitor algorithms are reported in Table 11 and Table 12. The convergence curve of GAO while achieving the optimal solution for welded beam design is drawn in Figure 13. Based on the optimization results, GAO has determined the optimal design for the welded beam with the values of the design variables equal to (0.2057296, 3.4704887, 9.0366239, and 0.2057296) and the value of the objective function equal to (1.7246798). What is evident from the simulation results is that GAO has provided superior performance by converging to better results in order to address the welded beam design problem compared to competitor algorithms.

Table 11.

Performance of optimization algorithms on welded beam design problem.

Algorithm Optimum Variables Optimum Cost
h l t b
GAO 0.2057296 3.4704887 9.0366239 0.2057296 1.7246798
WSO 0.2057296 3.4704888 9.0366238 0.2057296 1.7248523
AVOA 0.205056 3.4850976 9.0365299 0.2057339 1.7257923
RSA 0.1977725 3.5270192 9.8188942 0.2163579 1.9455461
MPA 0.2057296 3.4704887 9.0366239 0.2057296 1.7248523
TSA 0.2043787 3.4924081 9.0609 0.2061055 1.7327713
WOA 0.2127738 3.3465331 8.9813136 0.2191754 1.8098061
MVO 0.2059617 3.465488 9.0437236 0.2060167 1.7279454
GWO 0.2056085 3.4732685 9.0362859 0.2057905 1.7254435
TLBO 0.3021777 4.3080233 7.0649912 0.3989007 2.86852
GSA 0.2833168 2.8111202 7.6140935 0.2957385 2.0415263
PSO 0.3526171 3.4301508 7.5466754 0.5299732 3.7483578
GA 0.2220901 6.5032092 7.9154768 0.2925869 2.6371953

Table 12.

Statistical results of optimization algorithms on welded beam design problem.

Algorithm Mean Best Worst Std Median Rank
GAO 1.7246798 1.7246798 1.7246798 2.28E−16 1.7246798 1
WSO 1.7248526 1.7248523 1.7248572 1.101E−06 1.7248523 3
AVOA 1.7568691 1.7257923 1.8286017 0.0321107 1.7446373 7
RSA 2.127039 1.9455461 2.4331287 0.1269176 2.1049933 8
MPA 1.7248523 1.7248523 1.7248523 2.95E−09 1.7248523 2
TSA 1.7409627 1.7327713 1.7490567 0.0049359 1.7410475 6
WOA 2.2407055 1.8098061 3.7687515 0.5650313 2.0426429 9
MVO 1.7392665 1.7279454 1.7690502 0.0121131 1.7356826 5
GWO 1.7269657 1.7254435 1.7305264 0.0011999 1.7267498 4
TLBO 2.929E+13 2.86852 2.826E+14 7.143E+13 5.2174609 12
GSA 2.3577996 2.0415263 2.6295 0.1686298 2.3838126 10
PSO 4.039E+13 3.7483578 2.445E+14 7.713E+13 6.1318573 13
GA 9.913E+12 2.6371953 1.073E+14 3.043E+13 5.1880494 11

Figure 13.

Figure 13

GAOs performance convergence curve on welded beam design.

5.5. Tension/Compression Spring Design

Tension/compression spring design is a real-world engineering challenge with the aim of minimizing the weight of the tension/compression spring. The schematic of this design is shown in Figure 14, and its mathematical model is as follows [25]:

Figure 14.

Figure 14

Schematic of tension/compression spring design.

Consider: X=[x1, x2, x3 ]=[d, D, P].

Minimize: f(x)=(x3+2)x2x12.

Subject to:

g1(x)=1x23x371,785x14  0,  g2(x)=4x22x1x212,566(x2x13)+15108x121  0,
g3(x)=1140.45x1x22x3  0,  g4(x)=x1+x21.51  0.

With

0.05x12, 0.25x21.3    and    2 x315

The implementation results of GAO and competitor algorithms on the tension/compression spring design problem are reported in Table 13 and Table 14. The convergence curve of GAO towards the optimal solution for tension/compression spring design is drawn in Figure 15. Based on the optimization results, GAO has determined the optimal design for the tension/compression spring with the values of the design variables equal to (0.0516891, 0.3567177, and 11.288966) and the value of the objective function equal to (0.0126019). The simulation results show that GAO has provided superior performance by providing better results for solving the tension/compression spring design problem compared to competitor algorithms.

Table 13.

Performance of optimization algorithms on tension/compression spring design problem.

Algorithm Optimum Variables Optimum Cost
d D p
GAO 0.0516891 0.3567177 11.288966 0.0126019
WSO 0.0516873 0.3566758 11.291426 0.0126652
AVOA 0.0512511 0.3462947 11.933872 0.0126696
RSA 0.0503175 0.3192513 14.30236 0.0130991
MPA 0.0516905 0.3567534 11.286873 0.0126652
TSA 0.0510725 0.3420852 12.221253 0.01268
WOA 0.0512287 0.3457669 11.968427 0.01267
MVO 0.0503175 0.3243542 13.574804 0.0127396
GWO 0.0519242 0.3623905 10.968951 0.01267
TLBO 0.0658133 0.8277549 3.7462401 0.0169026
GSA 0.0547015 0.4310298 8.235468 0.0130247
PSO 0.0657408 0.8250149 3.7462402 0.0168129
GA 0.0662247 0.83462 3.7462402 0.0172493

Table 14.

Statistical results of optimization algorithms on tension/compression spring design problem.

Algorithm Mean Best Worst Std Median Rank
GAO 0.0126019 0.0126019 0.0126019 6.88E−18 0.0126019 1
WSO 0.0126749 0.0126652 0.012805 3.115E−05 0.0126656 3
AVOA 0.013254 0.0126696 0.0139577 0.0004844 0.0131947 8
RSA 0.0131701 0.0130991 0.0132952 6.028E−05 0.0131518 6
MPA 0.0126652 0.0126652 0.0126652 2.47E−09 0.0126652 2
TSA 0.0129235 0.01268 0.0134133 0.0002099 0.0128595 5
WOA 0.0131928 0.01267 0.0142585 0.000525 0.0130205 7
MVO 0.0159749 0.0127396 0.0172239 0.0014311 0.0167707 9
GWO 0.0127154 0.01267 0.0129094 4.805E−05 0.0127132 4
TLBO 0.0173644 0.0169026 0.0178919 0.000311 0.017326 10
GSA 0.0185374 0.0130247 0.0295218 0.0037009 0.0181672 11
PSO 1.818E+13 0.0168129 3.225E+14 7.217E+13 0.0168129 13
GA 1.42E+12 0.0172493 1.469E+13 4.24E+12 0.0238647 12

Figure 15.

Figure 15

GAOs performance convergence curve on tension/compression spring.

6. Conclusions and Future Works

In this paper, a new bio-inspired metaheuristic algorithm called Giant Armadillo Optimization (GAO) was introduced, which imitates the behavior of giant armadilloes in nature. The fundamental inspiration for GAOs design is derived from the attack strategy of giant armadillos in moving towards prey positions and digging termite mounds. The GAO theory was stated, and its implementation steps were mathematically modeled in two phases: (i) exploration based on the simulation of the movement of giant armadillos towards termite mounds, and (ii) exploitation based on the simulation of the giant armadillo’s digging skills in order to prey on and rip open termite mounds. The efficiency of GAO was evaluated in handling the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results showed that GAO has a high ability for exploration, exploitation, and balancing them during the search process. The results obtained from GAO were compared with the performance of twelve well-known metaheuristic algorithms. The simulation results showed that GAO has provided superior performance by achieving better results for most of the benchmark functions in competition with competitor algorithms. Using the statistical analysis of the Wilcoxon rank sum test, it was confirmed that GAO has a significant statistical superiority over competitor algorithms. Implementation of GAO on the CEC 2011 test suite and four engineering design problems showed that the proposed approach has an effective ability to handle optimization tasks in real-world applications.

Introducing the proposed GAO approach raises several research tasks for further work.

  • Binary GAO. The real version of GAO is introduced and fully designed in this paper. However, many optimization problems in science, such as feature selection, should be optimized using binary versions of metaheuristic algorithms. According to this, designing the binary version of the proposed GAO approach (BGAO) is one of the special potentials of this study.

  • Multi-objective GAO. From the point of view of the number of objective functions, optimization problems are divided into single-objective and multi-objective categories. In many optimization problems, several objective functions must be considered simultaneously in order to achieve a suitable solution. Therefore, developing the multi-objective version of the proposed GAO approach (MOGAO) in order to handle multi-objective optimization problems is another research potential of this paper.

  • Hybrid GAO. Combining two or more metaheuristic algorithms in order to benefit from the advantages of each algorithm and create an effective hybrid approach has always been of interest to researchers. Considering this, developing hybrid versions of the proposed GAO approach is another research proposal for future work.

  • Tackle new domains. GAO employment to address real-world applications and optimization problems in various sciences such as renewable energy, chemical engineering, robotics, and image processing are among other research proposals for further work.

Acknowledgments

Financial support of NSERC Canada through a research grant is acknowledged.

Appendix A

Table A1.

Control parameters values of competitor metaheuristic algorithms.

Algorithm Parameter Value
GA
Type Real coded
Selection Roulette wheel (Proportionate)
Crossover Whole arithmetic (Probability = 0.8,
α ∈ [−0.5, 1.5]
Mutation Gaussian (Probability = 0.05)
PSO
Topology Fully connected
Cognitive and social constant (C1, C2) = (2, 2)
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range
GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1
TLBO
TF: teaching factor TF = round [(1 + rand)]
random number rand is a random number between [0–1]
GWO
Convergence parameter (a) a: Linear reduction from 2 to 0.
MVO
wormhole existence probability (WEP) Min(WEP) = 0.2 and Max(WEP) = 1.
Exploitation accuracy over the iterations (p) p = 6.
WOA
Convergence parameter (a) a: Linear reduction from 2 to 0.
r is a random vector in [0–1]
l is a random number in [−1, 1]
TSA
Pmin and Pmax 1, 4
c1, c2, c3 random numbers lie in the range of [0–1]
MPA
Constant number P = 0.5
Random vector R is a vector of uniform random numbers in [0, 1]
Fish Aggregating Devices (FADs) FADs = 0.2
Binary vector U = 0 or 1
RSA
Sensitive parameter β = 0.01
Sensitive parameter α = 0.1
Evolutionary Sense (ES) ES: randomly decreasing values between 2 and −2
AVOA
L1, L2 0.8, 0.2
w 2.5
P1, P2, P3 0.6, 0.4, 0.6
WSO
Fmin and Fmax 0.07, 0.75
τ, ao, a1, a2 4.125, 6.25, 100, 0.0005

Author Contributions

Conceptualization, M.D., O.A. and H.A.-T.; methodology, M.D., T.H. and M.A.; software, S.G., I.L., O.A., H.A.-T. and O.P.M.; validation, S.G., I.L., O.P.M. and M.D.; formal analysis, M.D., O.P.M., T.H. and H.A.-T.; investigation, O.P.M., T.H. and M.A.; resources, O.A. and H.A.-T.; data curation, T.H. and M.A.; writing—original draft preparation, S.G., I.L. and H.A.-T.; writing—review and editing, O.P.M., M.D., O.A., T.H. and M.A.; visualization, T.H., M.A., S.G. and I.L.; supervision, M.D.; project administration, O.A., O.P.M., M.A. and T.H.; funding acquisition, O.P.M. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

“Professor O.P. Malik” has paid APC from his NSERC, Canada, research grant.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Zhao S., Zhang T., Ma S., Chen M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022;114:105075. doi: 10.1016/j.engappai.2022.105075. [DOI] [Google Scholar]
  • 2.Sergeyev Y.D., Kvasov D., Mukhametzhanov M. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-017-18940-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Liberti L., Kucherenko S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005;12:263–285. doi: 10.1111/j.1475-3995.2005.00503.x. [DOI] [Google Scholar]
  • 4.Alshanti W.G., Batiha I.M., Hammad M.M.A., Khalil R. A novel analytical approach for solving partial differential equations via a tensor product theory of Banach spaces. Partial Differ. Equ. Appl. Math. 2023;8:100531. doi: 10.1016/j.padiff.2023.100531. [DOI] [Google Scholar]
  • 5.Dehghani M., Trojovská E., Trojovský P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 2022;12:9924. doi: 10.1038/s41598-022-14225-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zeidabadi F.-A., Dehghani M., Trojovský P., Hubálovský Š., Leiva V., Dhiman G. Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems. Comput. Mater. Contin. 2022;72:399–416. doi: 10.32604/cmc.2022.024736. [DOI] [Google Scholar]
  • 7.de Armas J., Lalla-Ruiz E., Tilahun S.L., Voß S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput. 2022;21:265–287. doi: 10.1007/s11047-020-09837-9. [DOI] [Google Scholar]
  • 8.Dehghani M., Montazeri Z., Dehghani A., Malik O.P., Morales-Menendez R., Dhiman G., Nouri N., Ehsanifar A., Guerrero J.M., Ramirez-Mendoza R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021;11:1286. doi: 10.3390/app11031286. [DOI] [Google Scholar]
  • 9.Jakšić Z., Devi S., Jakšić O., Guha K. A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics. Biomimetics. 2023;8:278. doi: 10.3390/biomimetics8030278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Gölcük İ., Ozsoydan F.B. Q-learning and hyper-heuristic based algorithm recommendation for changing environments. Eng. Appl. Artif. Intell. 2021;102:104284. doi: 10.1016/j.engappai.2021.104284. [DOI] [Google Scholar]
  • 11.Huang Z., Zhang H., Wang D., Yu H., Wang L., Yu D., Peng Y. Preference-based multi-attribute decision-making method with spherical-Z fuzzy sets for green product design. Eng. Appl. Artif. Intell. 2023;126:106767. doi: 10.1016/j.engappai.2023.106767. [DOI] [Google Scholar]
  • 12.Gharehchopogh F.S., Maleki I., Dizaji Z.A. Chaotic vortex search algorithm: Metaheuristic algorithm for feature selection. Evol. Intell. 2022;15:1777–1808. doi: 10.1007/s12065-021-00590-1. [DOI] [Google Scholar]
  • 13.Zhang H., Huang Z., Tian G., Wang W., Li Z. A Hybrid QFD-Based Human-Centric Decision Making Approach of Disassembly Schemes Under Interval 2-Tuple q-Rung Orthopair Fuzzy Sets. IEEE Trans. Autom. Sci. Eng. 2023:1–12. doi: 10.1109/TASE.2023.3301237. [DOI] [Google Scholar]
  • 14.Dinkar S.K., Deep K., Mirjalili S., Thapliyal S. Opposition-based Laplacian Equilibrium Optimizer with application in Image Segmentation using Multilevel Thresholding. Expert Syst. Appl. 2021;174:114766. doi: 10.1016/j.eswa.2021.114766. [DOI] [Google Scholar]
  • 15.Mohar S.S., Goyal S., Kaur R. Localization of sensor nodes in wireless sensor networks using bat optimization algorithm with enhanced exploration and exploitation characteristics. J. Supercomput. 2022;78:11975–12023. doi: 10.1007/s11227-022-04320-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Trojovská E., Dehghani M., Trojovský P. Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. IEEE Access. 2022;10:49445–49473. doi: 10.1109/ACCESS.2022.3172789. [DOI] [Google Scholar]
  • 17.Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. [DOI] [Google Scholar]
  • 18.Kennedy J., Eberhart R. Particle swarm optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, WA, Australia. 27 November–1 December 1995; Perth, WA, Australia: IEEE; 1995. pp. 1942–1948. [Google Scholar]
  • 19.Dorigo M., Maniezzo V., Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996;26:29–41. doi: 10.1109/3477.484436. [DOI] [PubMed] [Google Scholar]
  • 20.Karaboga D., Basturk B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems; Proceedings of the International Fuzzy Systems Association World Congress; Cancun, Mexico. 18–21 June 2007; Berlin/Heidelberg, Germany: Springer; 2007. pp. 789–798. [Google Scholar]
  • 21.Yang X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010;2:78–84. doi: 10.1504/IJBIC.2010.032124. [DOI] [Google Scholar]
  • 22.Mirjalili S., Mirjalili S.M., Lewis A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. [DOI] [Google Scholar]
  • 23.Dehghani M., Trojovský P., Malik O.P. Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:121. doi: 10.3390/biomimetics8010121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Hashim F.A., Houssein E.H., Hussain K., Mabrouk M.S., Al-Atabany W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022;192:84–110. doi: 10.1016/j.matcom.2021.08.013. [DOI] [Google Scholar]
  • 25.Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. [DOI] [Google Scholar]
  • 26.Jiang Y., Wu Q., Zhu S., Zhang L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022;188:116026. doi: 10.1016/j.eswa.2021.116026. [DOI] [Google Scholar]
  • 27.Abualigah L., Abd Elaziz M., Sumari P., Geem Z.W., Gandomi A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. [DOI] [Google Scholar]
  • 28.Dehghani M., Montazeri Z., Bektemyssova G., Malik O.P., Dhiman G., Ahmed A.E. Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:470. doi: 10.3390/biomimetics8060470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Abdel-Basset M., Mohamed R., Zidan M., Jameel M., Abouhawwash M. Mantis Search Algorithm: A novel bio-inspired algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng. 2023;415:116200. doi: 10.1016/j.cma.2023.116200. [DOI] [Google Scholar]
  • 30.Houssein E.H., Oliva D., Samee N.A., Mahmoud N.F., Emam M.M. Liver Cancer Algorithm: A novel bio-inspired optimizer. Comput. Biol. Med. 2023;165:107389. doi: 10.1016/j.compbiomed.2023.107389. [DOI] [PubMed] [Google Scholar]
  • 31.Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. [DOI] [Google Scholar]
  • 32.Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. [DOI] [Google Scholar]
  • 33.Braik M., Hammouri A., Atwan J., Al-Betar M.A., Awadallah M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022;243:108457. doi: 10.1016/j.knosys.2022.108457. [DOI] [Google Scholar]
  • 34.Chopra N., Ansari M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022;198:116924. doi: 10.1016/j.eswa.2022.116924. [DOI] [Google Scholar]
  • 35.Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. [DOI] [Google Scholar]
  • 36.Storn R., Price K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. [DOI] [Google Scholar]
  • 37.De Castro L.N., Timmis J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003;7:526–544. doi: 10.1007/s00500-002-0237-z. [DOI] [Google Scholar]
  • 38.Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Volume 1 MIT Press; Cambridge, MA, USA: 1992. [Google Scholar]
  • 39.Reynolds R.G. An introduction to cultural algorithms; Proceedings of the Third Annual Conference on Evolutionary Programming; San Diego, CA, USA. 24–26 February 1994; Singapore: World Scientific; 1994. pp. 131–139. [Google Scholar]
  • 40.Beyer H.-G., Schwefel H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002;1:3–52. doi: 10.1023/A:1015059928466. [DOI] [Google Scholar]
  • 41.Dehghani M., Samet H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020;2:1720. doi: 10.1007/s42452-020-03511-6. [DOI] [Google Scholar]
  • 42.Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. [DOI] [Google Scholar]
  • 43.Dehghani M., Montazeri Z., Dhiman G., Malik O., Morales-Menendez R., Ramirez-Mendoza R.A., Dehghani A., Guerrero J.M., Parra-Arroyo L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020;10:6173. doi: 10.3390/app10186173. [DOI] [Google Scholar]
  • 44.Mirjalili S., Mirjalili S.M., Hatamlou A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016;27:495–513. doi: 10.1007/s00521-015-1870-7. [DOI] [Google Scholar]
  • 45.Hatamlou A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013;222:175–184. doi: 10.1016/j.ins.2012.08.023. [DOI] [Google Scholar]
  • 46.Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021;51:1531–1551. doi: 10.1007/s10489-020-01893-z. [DOI] [Google Scholar]
  • 47.Eskandar H., Sadollah A., Bahreininejad A., Hamdi M. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012;110:151–166. doi: 10.1016/j.compstruc.2012.07.010. [DOI] [Google Scholar]
  • 48.Irizarry R. LARES: An artificial chemical process approach for optimization. Evol. Comput. 2004;12:435–459. doi: 10.1162/1063656043138897. [DOI] [PubMed] [Google Scholar]
  • 49.Salmani M.H., Eshghi K. A metaheuristic algorithm based on chemotherapy science: CSA. J. Optim. 2017;2017:3082024. doi: 10.1155/2017/3082024. [DOI] [Google Scholar]
  • 50.Wei Z., Huang C., Wang X., Han T., Li Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access. 2019;7:66084–66109. doi: 10.1109/ACCESS.2019.2918406. [DOI] [Google Scholar]
  • 51.Hashim F.A., Houssein E.H., Mabrouk M.S., Al-Atabany W., Mirjalili S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019;101:646–667. doi: 10.1016/j.future.2019.07.015. [DOI] [Google Scholar]
  • 52.Cuevas E., Oliva D., Zaldivar D., Pérez-Cisneros M., Sossa H. Circle detection using electro-magnetism optimization. Inf. Sci. 2012;182:40–55. doi: 10.1016/j.ins.2010.12.024. [DOI] [Google Scholar]
  • 53.Pereira J.L.J., Francisco M.B., Diniz C.A., Oliver G.A., Cunha S.S., Jr., Gomes G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021;170:114522. doi: 10.1016/j.eswa.2020.114522. [DOI] [Google Scholar]
  • 54.Kaveh A., Dadras A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017;110:69–84. doi: 10.1016/j.advengsoft.2017.03.014. [DOI] [Google Scholar]
  • 55.Faramarzi A., Heidarinejad M., Stephens B., Mirjalili S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020;191:105190. doi: 10.1016/j.knosys.2019.105190. [DOI] [Google Scholar]
  • 56.Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. [DOI] [Google Scholar]
  • 57.Matoušová I., Trojovský P., Dehghani M., Trojovská E., Kostra J. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization. Sci. Rep. 2023;13:10312. doi: 10.1038/s41598-023-37537-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Dehghani M., Mardaneh M., Guerrero J.M., Malik O.P., Ramirez-Mendoza R.A., Matas J., Vasquez J.C., Parra-Arroyo L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020;10:5791. doi: 10.3390/app10175791. [DOI] [Google Scholar]
  • 59.Dehghani M., Trojovská E., Zuščák T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 2022;12:17387. doi: 10.1038/s41598-022-22458-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Braik M., Ryalat M.H., Al-Zoubi H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022;34:409–455. doi: 10.1007/s00521-021-06392-x. [DOI] [Google Scholar]
  • 61.Trojovský P., Dehghani M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 2022;8:e976. doi: 10.7717/peerj-cs.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Al-Betar M.A., Alyasseri Z.A.A., Awadallah M.A., Abu Doush I. Coronavirus herd immunity optimizer (CHIO) Neural Comput. Appl. 2021;33:5011–5042. doi: 10.1007/s00521-020-05296-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Zhang Y., Jin Z. Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems. Expert Syst. Appl. 2020;148:113246. doi: 10.1016/j.eswa.2020.113246. [DOI] [Google Scholar]
  • 64.Oyelade O.N., Ezugwu A.E.-S., Mohamed T.I., Abualigah L. Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm. IEEE Access. 2022;10:16150–16177. doi: 10.1109/ACCESS.2022.3147821. [DOI] [Google Scholar]
  • 65.Mohamed A.W., Hadi A.A., Mohamed A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020;11:1501–1529. doi: 10.1007/s13042-019-01053-x. [DOI] [Google Scholar]
  • 66.Ayyarao T.L., RamaKrishna N., Elavarasam R.M., Polumahanthi N., Rambabu M., Saini G., Khan B., Alatas B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access. 2022;10:25073–25105. doi: 10.1109/ACCESS.2022.3153493. [DOI] [Google Scholar]
  • 67.Dehghani M., Montazeri Z., Givi H., Guerrero J.M., Dhiman G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 2020;13:286–294. doi: 10.22266/ijies2020.1031.26. [DOI] [Google Scholar]
  • 68.Dehghani M., Montazeri Z., Saremi S., Dehghani A., Malik O.P., Al-Haddad K., Guerrero J.M. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020;13:216–225. doi: 10.22266/ijies2020.0831.19. [DOI] [Google Scholar]
  • 69.Dehghani M., Montazeri Z., Malik O.P., Ehsanifar A., Dehghani A. OSA: Orientation search algorithm. Int. J. Ind. Electron. Control Optim. 2019;2:99–112. [Google Scholar]
  • 70.Doumari S.A., Givi H., Dehghani M., Malik O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021;14:545–554. doi: 10.22266/ijies2021.0630.46. [DOI] [Google Scholar]
  • 71.Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. [DOI] [Google Scholar]
  • 72.Montazeri Z., Niknam T., Aghaei J., Malik O.P., Dehghani M., Dhiman G. Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics. 2023;8:386. doi: 10.3390/biomimetics8050386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Moghdani R., Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. [DOI] [Google Scholar]
  • 74.Wang G.-G., Deb S., Cui Z. Monarch butterfly optimization. Neural Comput. Appl. 2019;31:1995–2014. doi: 10.1007/s00521-015-1923-y. [DOI] [Google Scholar]
  • 75.Li S., Chen H., Wang M., Heidari A.A., Mirjalili S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020;111:300–323. doi: 10.1016/j.future.2020.03.055. [DOI] [Google Scholar]
  • 76.Wang G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 2018;10:151–164. doi: 10.1007/s12293-016-0212-3. [DOI] [Google Scholar]
  • 77.Yang Y., Chen H., Heidari A.A., Gandomi A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021;177:114864. doi: 10.1016/j.eswa.2021.114864. [DOI] [Google Scholar]
  • 78.Ahmadianfar I., Heidari A.A., Gandomi A.H., Chu X., Chen H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 2021;181:115079. doi: 10.1016/j.eswa.2021.115079. [DOI] [Google Scholar]
  • 79.Tu J., Chen H., Wang M., Gandomi A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021;18:674–710. doi: 10.1007/s42235-021-0050-y. [DOI] [Google Scholar]
  • 80.Ahmadianfar I., Heidari A.A., Noshadian S., Chen H., Gandomi A.H. INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 2022;195:116516. doi: 10.1016/j.eswa.2022.116516. [DOI] [Google Scholar]
  • 81.Heidari A.A., Mirjalili S., Faris H., Aljarah I., Mafarja M., Chen H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019;97:849–872. doi: 10.1016/j.future.2019.02.028. [DOI] [Google Scholar]
  • 82.Su H., Zhao D., Heidari A.A., Liu L., Zhang X., Mafarja M., Chen H. RIME: A physics-based optimization. Neurocomputing. 2023;532:183–214. doi: 10.1016/j.neucom.2023.02.010. [DOI] [Google Scholar]
  • 83.Wilson D.E., Reeder D.M. Mammal Species of the World: A Taxonomic and Geographic Reference. Volume 1 JHU Press; Baltimore, MD, USA: 2005. [Google Scholar]
  • 84.Emerson D. Animal: The Definitive Visual Guide to the World’s Wildlife. Bowker Magazine Group Cahners Magazine Division; New York, NY, USA: 2001. [Google Scholar]
  • 85.Carter T.S., Superina M., Leslie D.M. Priodontes maximus (Cingulata: Chlamyphoridae) Mamm. Species. 2016;48:21–34. doi: 10.1093/mspecies/sew002. [DOI] [Google Scholar]
  • 86.Abdollahzadeh B., Gharehchopogh F.S., Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021;158:107408. doi: 10.1016/j.cie.2021.107408. [DOI] [Google Scholar]
  • 87.Awad N., Ali M., Liang J., Qu B., Suganthan P., Definitions P. Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Nanyang Technological University; Singapore: 2016. Technology Report. [Google Scholar]
  • 88.Wilcoxon F. Breakthroughs in Statistics. Springer; Berlin/Heidelberg, Germany: 1992. Individual comparisons by ranking methods; pp. 196–202. [Google Scholar]
  • 89.Das S., Suganthan P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. Jadavpur University; Kolkata, India: Nanyang Technological University; Singapore: 2010. pp. 341–359. [Google Scholar]
  • 90.Kannan B., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. [DOI] [Google Scholar]
  • 91.Gandomi A.H., Yang X.-S. Computational Optimization, Methods and Algorithms. Springer; Berlin/Heidelberg, Germany: 2011. Benchmark problems in structural optimization; pp. 259–281. [Google Scholar]
  • 92.Mezura-Montes E., Coello C.A.C. Useful infeasible solutions in engineering optimization with evolutionary algorithms; Proceedings of the Mexican International Conference on Artificial Intelligence; Monterrey, Mexico. 14–18 November 2005; Berlin/Heidelberg, Germany: Springer; 2005. pp. 652–662. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data are contained within the article.


Articles from Biomimetics are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES