Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Sep;79(1):159–164. doi: 10.1104/pp.79.1.159

Pyrophosphate-Driven Proton Transport by Microsomal Membranes of Corn Coleoptiles 1

Alain Chanson 1,2,2, Jenny Fichmann 1,2, David Spear 1,2, Lincoln Taiz 1,2
PMCID: PMC1074844  PMID: 16664362

Abstract

Corn (Zea mays L. cv Trojan T929) coleoptile membranes were fractionated on isopycnic sucrose density gradients. Two peaks of ATP-driven H+-transport activity, corresponding to the previously characterized tonoplast (1.07 grams per cubic centimeter) and Golgi (1.13 grams per cubic centimeter) fractions (Chanson and Taiz, Plant Physiol 1985 78: 232-240) were localized. Coincident with these were two peaks of inorganic pyrophosphate (PPi)-driven H+-transport. At saturating (3 millimolar) concentrations of Mg2+:ATP, the rate of proton transport was further enhanced by the addition of 3 millimolar PPi, and the stimulation was additive, i.e. equal to the sum of the two added separately. The specific PPi analog, imidodiphosphate, antagonized PPi-driven H+-transport, but had no effect on ATP-driven transport. Moreover, PPi-dependent proton transport in both tonoplast-enriched and Golgi-enriched fractions was strongly promoted by 50 millimolar KNO3, unlike the ATP-dependent H+-pumps of the same membranes. Taken together, the results indicate that PPi-driven proton transport is mediated by specific membrane-bound H+-translocating pyrophosphatases. Both potassium and a permanent anion (NO3 > Cl), were required for maximum activity. The PPi-driven proton pumps were totally inhibited by N,N′-dicyclohexylcarbodiimide, but were insensitive to 100 millimolar vanadate. The PPi concentration in coleoptile extracts was determined using an NADH oxidation assay system coupled to purified pyrophosphate:fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90). The total pyrophosphate content of corn coleoptiles was 20 nanomoles/gram fresh weight. Assuming a cytoplasmic location, the calculated PPi concentration is sufficient to drive proton transport at 20% of the maximum rate measured in vitro for the tonoplast-enriched fraction, and 10% of the maximum rate for the Golgi-enriched fraction.

Full text

PDF
159

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltscheffsky M., Baltscheffsky H., von Stedingk L. V. Light-induced energy conversion and the inorganic pyrophosphatase reaction in chromatophores from Rhodospirillum rubrum . Brookhaven Symp Biol. 1966;19:246–257. [PubMed] [Google Scholar]
  2. Bennett A. B., O'neill S. D., Spanswick R. M. H-ATPase Activity from Storage Tissue of Beta vulgaris: I. Identification and Characterization of an Anion-Sensitive H-ATPase. Plant Physiol. 1984 Mar;74(3):538–544. doi: 10.1104/pp.74.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chanson A., McNaughton E., Taiz L. Evidence for a KCl-Stimulated, Mg-ATPase on the Golgi of Corn Coleoptiles. Plant Physiol. 1984 Oct;76(2):498–507. doi: 10.1104/pp.76.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chanson A., Taiz L. Evidence for an ATP-Dependent Proton Pump on the Golgi of Corn Coleoptiles. Plant Physiol. 1985 Jun;78(2):232–240. doi: 10.1104/pp.78.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Churchill K. A., Holaway B., Sze H. Separation of two types of electrogenic h-pumping ATPases from oat roots. Plant Physiol. 1983 Dec;73(4):921–928. doi: 10.1104/pp.73.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Churchill K. A., Sze H. Anion-sensitive, h-pumping ATPase in membrane vesicles from oat roots. Plant Physiol. 1983 Mar;71(3):610–617. doi: 10.1104/pp.71.3.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guynn R. W., Veloso D., Lawson J. W., Veech R. L. The concentration and control of cytoplasmic free inorganic pyrophosphate in rat liver in vivo. Biochem J. 1974 Jun;140(3):369–375. doi: 10.1042/bj1400369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Imbrie C. W., Murphy T. M. Solubilization and partial purification of ATPase from a rose cell plasma membrane fraction. Plant Physiol. 1984 Mar;74(3):611–616. doi: 10.1104/pp.74.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kondrashin A. A., Remennikov V. G., Samuilov V. D., Skulachev V. P. Reconstitution of biological molecular generators of electric current. Inorganic pyrophosphatase. Eur J Biochem. 1980 Dec;113(1):219–222. doi: 10.1111/j.1432-1033.1980.tb06159.x. [DOI] [PubMed] [Google Scholar]
  10. Mandala S., Mettler I. J., Taiz L. Localization of the proton pump of corn coleoptile microsomal membranes by density gradient centrifugation. Plant Physiol. 1982 Dec;70(6):1743–1747. doi: 10.1104/pp.70.6.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mansurova S. E., Shakhov Y. A., Kulaev I. S. Mitochondrial pyrophosphatase is a coupling factor of respiration and pyrophosphate synthesis. FEBS Lett. 1977 Feb 15;74(1):31–34. doi: 10.1016/0014-5793(77)80745-x. [DOI] [PubMed] [Google Scholar]
  12. Mettler I. J., Mandala S., Taiz L. Characterization of in vitro proton pumping by microsomal vesicles isolated from corn coleoptiles. Plant Physiol. 1982 Dec;70(6):1738–1742. doi: 10.1104/pp.70.6.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. O'neill S. D., Bennett A. B., Spanswick R. M. Characterization of a NO(3)-Sensitive H-ATPase from Corn Roots. Plant Physiol. 1983 Jul;72(3):837–846. doi: 10.1104/pp.72.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rea P. A., Poole R. J. Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiol. 1985 Jan;77(1):46–52. doi: 10.1104/pp.77.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rebeille F., Bligny R., Douce R. Is the cytosolic pi concentration a limiting factor for plant cell respiration? Plant Physiol. 1984 Feb;74(2):355–359. doi: 10.1104/pp.74.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rubinstein B., Stern A. I., Stout R. G. Redox activity at the surface of oat root cells. Plant Physiol. 1984 Oct;76(2):386–391. doi: 10.1104/pp.76.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shakhov Y. A., Nyrén P., Baltscheffsky M. Reconstitution of highly purified proton-translocating pyrophosphatase from Rhodospirillum rubrum. FEBS Lett. 1982 Sep 6;146(1):177–180. doi: 10.1016/0014-5793(82)80730-8. [DOI] [PubMed] [Google Scholar]
  18. Smyth D. A., Black C. C. Measurement of the pyrophosphate content of plant tissues. Plant Physiol. 1984 Jul;75(3):862–864. doi: 10.1104/pp.75.3.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vara F., Serrano R. Partial purification and properties of the proton-translocating ATPase of plant plasma membranes. J Biol Chem. 1982 Nov 10;257(21):12826–12830. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES