Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Oct;79(2):432–435. doi: 10.1104/pp.79.2.432

FeIII Reduction in Cell Walls of Soybean Roots 1

Carl L Tipton 1, Joan Thowsen 1
PMCID: PMC1074902  PMID: 16664427

Abstract

Reduction of FeIIIEDTA by excised roots of soybean seedlings (Glycine max L.) is stimulated by l-malate in the bathing solution. Reduction occurs much more rapidly with roots of seedlings grown in the absence of iron than with roots of seedlings grown with iron. Cell-wall preparations from these roots catalyze reduction of FeIIIEDTA by NADH. They also contain NAD+-dependent l-malate dehydrogenase. Enzymic activity of the cell-wall preparations is not affected by previous iron nutrition of the plants, but the amount of l-malate in the roots is increased when seedlings have been deprived of iron. We propose that reduction of iron before absorption by soybean roots occurs in the cell-wall space, with l-malate secreted from the roots serving as the source of electrons. Part of the iron reductase activity of the cell walls can be solubilized by extraction with 1 molar NaCl. The enzyme has been partially purified.

Full text

PDF
432

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AKAZAWA T., CONN E. E. The oxidation of reduced pyridine nucleotides by peroxidase. J Biol Chem. 1958 May;232(1):403–415. [PubMed] [Google Scholar]
  2. Barrett-Lennard E. G., Marschner H., Römheld V. Mechanism of Short Term Fe Reduction by Roots : Evidence against the Role of Secreted Reductants. Plant Physiol. 1983 Dec;73(4):893–898. doi: 10.1104/pp.73.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chaney R. L., Brown J. C., Tiffin L. O. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 1972 Aug;50(2):208–213. doi: 10.1104/pp.50.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Römheld V., Marschner H. Mechanism of iron uptake by peanut plants : I. Fe reduction, chelate splitting, and release of phenolics. Plant Physiol. 1983 Apr;71(4):949–954. doi: 10.1104/pp.71.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sijmons P. C., van den Briel W., Bienfait H. F. Cytosolic NADPH is the electron donor for extracellular fe reduction in iron-deficient bean roots. Plant Physiol. 1984 May;75(1):219–221. doi: 10.1104/pp.75.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Stephens G. J., Wood R. K. Release of enzymes from cell walls by an endopectate-trans-eliminase. Nature. 1974 Sep 27;251(5473):358–358. doi: 10.1038/251358a0. [DOI] [PubMed] [Google Scholar]
  7. Terry M. E., Bonner B. A. An Examination of Centrifugation as a Method of Extracting an Extracellular Solution from Peas, and Its Use for the Study of Indoleacetic Acid-induced Growth. Plant Physiol. 1980 Aug;66(2):321–325. doi: 10.1104/pp.66.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES