Abstract
Activity of arginine decarboxylase in etiolated pea seedlings appears 24 hours after seed imbibition, reaches its highest level on the 4th day, and levels off until the 7th day. This activity was found in the apical and subapical tissue of the roots and shoots where intensive DNA synthesis occurs. Exposure of the seedlings to ethylene greatly reduced the specific activity of this enzyme. The inhibition was observed within 30 min of the hormone application, and maximal effect—90% inhibition—after 18 hours. Ethylene at physiological concentrations affected the enzyme activity; 50% inhibitory rate was recorded at 0.12 microliters per liter ethylene and maximal response at 1.2 microliters per liter. Ethylene provoked a 5-fold increase in the Kmapp of arginine decarboxylase for its substrate and reduced the Vmaxapp by 10-fold. However, the enzyme recovered from the inhibition and regained control activity 7 hours after transferral of the seedlings to ethylene-free atmosphere. Reducing the endogenous level of ethylene in the tissue by hypobaric pressure, or by exposure to light, as well as interfering with ethylene action by treatment with silver thiosulfate or 2,5-norbornadiene, caused a gradual increase in the specific activity of arginine decarboxylase in the apical tissue of the etiolated seedlings. On the basis of these findings, the possible control of arginine decarboxylase activity by endogenous ethylene, and its implication for the hormone effect on plant growth, are discussed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apelbaum A., Burg S. P. Effect of Ethylene on Cell Division and Deoxyribonucleic Acid Synthesis in Pisum sativum. Plant Physiol. 1972 Jul;50(1):117–124. doi: 10.1104/pp.50.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apelbaum A., Burg S. P. Effects of Ethylene and 2,4-Dichlorophenoxyacetic Acid on Cellular Expansion in Pisum sativum. Plant Physiol. 1972 Jul;50(1):125–131. doi: 10.1104/pp.50.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apelbaum A., Yang S. F. Biosynthesis of stress ethylene induced by water deficit. Plant Physiol. 1981 Sep;68(3):594–596. doi: 10.1104/pp.68.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagni N., Torrigiani P., Barbieri P. Effect of various inhibitors of polyamine synthesis on the growth of Helianthus tuberosus. Med Biol. 1981 Dec;59(5-6):403–409. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burg S. P. Ethylene in plant growth. Proc Natl Acad Sci U S A. 1973 Feb;70(2):591–597. doi: 10.1073/pnas.70.2.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen E., Arad S. M., Heimer Y. M., Mizrahi Y. Participation of ornithine decarboxylase in early stages of tomato fruit development. Plant Physiol. 1982 Aug;70(2):540–543. doi: 10.1104/pp.70.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dai Y. R., Galston A. W. Simultaneous Phytochrome-controlled Promotion and Inhibition of Arginine Decarboxylase Activity in Buds and Epicotyls of Etiolated Peas. Plant Physiol. 1981 Feb;67(2):266–269. doi: 10.1104/pp.67.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dai Y. R., Kaur-Sawhney R., Galston A. W. Promotion by gibberellic Acid of polyamine biosynthesis in internodes of light-grown dwarf peas. Plant Physiol. 1982 Jan;69(1):103–106. doi: 10.1104/pp.69.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goeschl J. D., Pratt H. K., Bonner B. A. An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol. 1967 Aug;42(8):1077–1080. doi: 10.1104/pp.42.8.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kallio A., McCann P. P., Bey P. DL-alpha-(Difluoromethyl)arginine: a potent enzyme-activated irreversible inhibitor of bacterial decarboxylases. Biochemistry. 1981 May 26;20(11):3163–3168. doi: 10.1021/bi00514a027. [DOI] [PubMed] [Google Scholar]
- Kallio A., McCann P. P. Difluoromethylornithine irreversibly inactivates ornithine decarboxylase of Pseudomonas aeruginosa, but does not inhibit the enzymes of Escherichia coli. Biochem J. 1981 Oct 15;200(1):69–75. doi: 10.1042/bj2000069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramakrishna S., Adiga P. R. Arginine decarboxylase from Lathyrus sativus seedlings. Purification and properites. Eur J Biochem. 1975 Nov 15;59(2):377–386. doi: 10.1111/j.1432-1033.1975.tb02465.x. [DOI] [PubMed] [Google Scholar]
- Rupniak H. T., Paul D. Inhibition of spermidine and spermine synthesis leads to growth arrest of rat embryo fibroblasts in G1. J Cell Physiol. 1978 Feb;94(2):161–170. doi: 10.1002/jcp.1040940205. [DOI] [PubMed] [Google Scholar]
- Samimy C. Effect of light on ethylene production and hypocotyl growth of soybean seedlings. Plant Physiol. 1978 May;61(5):772–774. doi: 10.1104/pp.61.5.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]