Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Nov;79(3):695–698. doi: 10.1104/pp.79.3.695

Possible Control of Maize Leaf Sucrose-Phosphate Synthase Activity by Light Modulation

Richard C Sicher 1,2,3, Diane F Kremer 1,2,3
PMCID: PMC1074954  PMID: 16664475

Abstract

Sucrose phosphate synthase (SPS) activity was measured in extracts of maize (Zea mays L.) and soybean (Glycine max L. [Merr.]) leaves over a single day/night cycle. There was a 2- to 3-fold postillumination increase in extractable enzyme activity in maize leaves, whereas the activity of soybean SPS was only about 30% higher in extracts prepared from light- compared to dark-adapted leaves. Alterations in extractable maize leaf SPS activity correlated with light/dark transitions suggesting that the enzyme may be light modulated. Diurnal variations of extractable maize leaf SPS activity were also observed in a greenhouse experiment. A transition from high (light) to low (dark) extractable SPS activity occurred near the light compensation point for photosynthesis (about 20 micromole photons per square meter per second). Further increases in irradiance did not increase extractable SPS activity. Substrate affinities for uridine 5′-diphosphoglucose (Michaelis constant = 3.5 and 5.1 millimolar) and fructose-6 phosphate (half maximal concentration = 1.0 and 2.5 millimolar) were lower for partially purified SPS obtained from light compared to dark acclimated maize leaves. Light-induced changes in extractable SPS activity were stable for at least one column chromatography step. The above results indicate that light-induced changes in SPS activity may be important in controlling the photosynthetic production of sucrose.

Full text

PDF
695

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir J., Preiss J. Kinetic characterization of spinach leaf sucrose-phosphate synthase. Plant Physiol. 1982 May;69(5):1027–1030. doi: 10.1104/pp.69.5.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CABIB E., LELOIR L. F. The biosynthesis of trehalose phosphate. J Biol Chem. 1958 Mar;231(1):259–275. [PubMed] [Google Scholar]
  3. Harbron S., Foyer C., Walker D. The purification and properties of sucrose-phosphate synthetase from spinach leaves: the involvement of this enzyme and fructose bisphosphatase in the regulation of sucrose biosynthesis. Arch Biochem Biophys. 1981 Nov;212(1):237–246. doi: 10.1016/0003-9861(81)90363-5. [DOI] [PubMed] [Google Scholar]
  4. Huber S. C., Rufty T. W., Kerr P. S. Effect of Photoperiod on Photosynthate Partitioning and Diurnal Rhythms in Sucrose Phosphate Synthase Activity in Leaves of Soybean (Glycine max L. [Merr.]) and Tobacco (Nicotiana tabacum L.). Plant Physiol. 1984 Aug;75(4):1080–1084. doi: 10.1104/pp.75.4.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LELOIR L. F., CARDINI C. E. The biosynthesis of sucrose phosphate. J Biol Chem. 1955 May;214(1):157–165. [PubMed] [Google Scholar]
  6. Rufty T. W., Kerr P. S., Huber S. C. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol. 1983 Oct;73(2):428–433. doi: 10.1104/pp.73.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sicher R. C., Kremer D. F. Changes of Sucrose-Phosphate Synthase Activity in Barley Primary Leaves during Light/Dark Transitions. Plant Physiol. 1984 Dec;76(4):910–912. doi: 10.1104/pp.76.4.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sicher R. C., Kremer D. F., Harris W. G. Diurnal carbohydrate metabolism of barley primary leaves. Plant Physiol. 1984 Sep;76(1):165–169. doi: 10.1104/pp.76.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stitt M., Gerhardt R., Kürzel B., Heldt H. W. A role for fructose 2,6-bisphosphate in the regulation of sucrose synthesis in spinach leaves. Plant Physiol. 1983 Aug;72(4):1139–1141. doi: 10.1104/pp.72.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stitt M., Wirtz W., Heldt H. W. Metabolite levels during induction in the chloroplast and extrachloroplast compartments of spinach protoplasts. Biochim Biophys Acta. 1980 Nov 5;593(1):85–102. doi: 10.1016/0005-2728(80)90010-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES