Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 Jan;80(1):231–238. doi: 10.1104/pp.80.1.231

Chlorophyll-Protein Complexes from Euglena gracilis and Mutants Deficient in Chlorophyll b1

II. Polypeptide Composition

Francis X Cunningham Jr 1,2, Jerome A Schiff 1,3
PMCID: PMC1075087  PMID: 16664588

Abstract

Chlorophyll-protein complexes (CPs) obtained from thylakoids of Euglena gracilis Klebs var bacillaris Cori contain the following polypeptides (listed in parentheses in order of prominence after Coomassie R-250 staining of polyacrylamide gels): CP Ia (66, 18, 22, 22.5, 27.5, 21, 28, 24, 25.5, and 26 kilodaltons [kD]); CP I (66 kD); CPx (41 kD); LHCP2 (an oligomer of LHCP) (26.5, 28, and 26 kD); CPy (27 and 19 kD); CPa (54 kD); and LHCP (26.5, 28, and 26 kD). Mutants of bacillaris low in chlorophyll b (Gr1BSL, G1BU, and O4BSL; Chl a/b [mol/mol] = 50-100) which lack CP Ia, LHCP2, and LHCP also lack or are deficient in polypeptides associated with these complexes in wild-type cells. Mutants G1 and O4, which also lack CPy, lack the CPy-associated polypeptides found in wild-type and Gr1. Using an antiserum which was elicited by and reacts strongly and selectively with the SDS-treated major polypeptide (26.5 kD) of the LHCP complexes of wild-type, this polypeptide is undetectable in the mutants (≪0.25% of the level in wild-type on a cell basis); the antiserum does not react with the SDS-treated 28 kD polypeptide of the Euglena LHCP complexes and cross-reacts only very weakly with components in SDS-treated cells of Chlamydomonas reinhardtii Dangeard and chloroplasts of Spinacia oleracea L. cv Winter Bloomsdale. Rates of photosynthesis of the wild-type and mutant cells of Euglena are approximately equal on a cell basis when measured at light saturation, consistent with the selective loss of major antenna components but not CP I or CPa from the mutants.

Full text

PDF
231

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellemare G., Bartlett S. G., Chua N. H. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem. 1982 Jul 10;257(13):7762–7767. [PubMed] [Google Scholar]
  2. Bingham S., Schiff J. A. Events surrounding the early development of Euglena chloroplasts. 16. Plastid thylakoid polypeptides during greening. Biochim Biophys Acta. 1979 Sep 11;547(3):531–543. doi: 10.1016/0005-2728(79)90032-x. [DOI] [PubMed] [Google Scholar]
  3. Boardman N. K., Highkin H. R. Studies on a barley mutant lacking chlorophyll b. I. Photochemical activity of isolated chloroplasts. Biochim Biophys Acta. 1966 Oct 10;126(2):189–199. doi: 10.1016/0926-6585(66)90054-9. [DOI] [PubMed] [Google Scholar]
  4. Brandt P., von Kessel B. Cooperation of cytoplasmic and plastidial translation in formation of the photosynthetic apparatus and its stage-specific efficiency. Plant Physiol. 1983 Jul;72(3):616–619. doi: 10.1104/pp.72.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burke J. J., Steinback K. E., Arntzen C. J. Analysis of the Light-harvesting Pigment-Protein Complex of Wild Type and a Chlorophyll-b-less Mutant of Barley. Plant Physiol. 1979 Feb;63(2):237–243. doi: 10.1104/pp.63.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Camm E. L., Green B. R. Widespread distribution of some minor chlorophyll-protein complexes in some plants and algae. Plant Physiol. 1981 May;67(5):1061–1063. doi: 10.1104/pp.67.5.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chua N. H., Blomberg F. Immunochemical studies of thylakoid membrane polypeptides from spinach and Chlamydomonas reinhardtii. A modified procedure for crossed immunoelectrophoresis of dodecyl sulfate.protein complexes. J Biol Chem. 1979 Jan 10;254(1):215–223. [PubMed] [Google Scholar]
  8. Cunningham F. X., Schiff J. A. Chlorophyll-Protein Complexes from Euglena gracilis and Mutants Deficient in Chlorophyll b: I. Pigment Composition. Plant Physiol. 1986 Jan;80(1):223–230. doi: 10.1104/pp.80.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Delepelaire P., Chua N. H. Electrophoretic purification of chlorophyll a/b-protein complexes from Chlamydomonas reinhardtii and spinach and analysis of their polypeptide compositions. J Biol Chem. 1981 Sep 10;256(17):9300–9307. [PubMed] [Google Scholar]
  10. Freyssinet G., Harris G. C., Nasatir M., Schiff J. A. Events Surrounding the Early Development of Euglena Chloroplasts: 14. Biosynthesis of Cytochrome c-552 in Wild Type and Mutant Cells. Plant Physiol. 1979 May;63(5):908–915. doi: 10.1104/pp.63.5.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Markwell J. P., Webber A. N., Lake B. Mutants of Sweetclover (Melilotus alba) Lacking Chlorophyll b: Studies on Pigment-Protein Complexes and Thylakoid Protein Phosphorylation. Plant Physiol. 1985 Apr;77(4):948–951. doi: 10.1104/pp.77.4.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Markwell M. A., Haas S. M., Tolbert N. E., Bieber L. L. Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol. 1981;72:296–303. doi: 10.1016/s0076-6879(81)72018-4. [DOI] [PubMed] [Google Scholar]
  14. Plumley F. G., Schmidt G. W. Rocket and crossed immunoelectrophoresis of proteins solubilized with sodium dodecyl sulfate. Anal Biochem. 1983 Oct 1;134(1):86–95. doi: 10.1016/0003-2697(83)90267-1. [DOI] [PubMed] [Google Scholar]
  15. Ryrie I. J. Immunological evidence for apoproteins of the light-harvesting chlorophyll-protein complex in a mutant of barley lacking chlorophyll b. Eur J Biochem. 1983 Mar 1;131(1):149–155. doi: 10.1111/j.1432-1033.1983.tb07242.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES