Abstract
Relationships between net plant CO2 exchange rate (CER) and canopy development were examined in `jubilee' tomato over the initial 4 weeks of vegetative growth. A comparison was made between two plant groups that were alternatively exposed to 200 or 800 microeinsteins per square meter per second midday irradiation to establish a differential in net CER. Plants exposed to higher irradiation demonstrated a 2- to 4-fold greater net photosynthetic rate per leaf area and 100% average higher net CO2 assimilation rate/plant· day. However, leaf-stem growth differed by <50% suggesting a poor relationship to CER. Leaf area growth rate (LAGR) of individual leaves appeared closely related to CER during initial leaf expansion but a greater function of order of emergence in successive leaf growth. LAGR on a per plant basis increased linearly with leaf dry weight but appeared more limited by factors determining maximum leaf enlargement and rate of new leaf development. Net CO2 assimilation/leaf area and leaf starch consistently declined with time while net CO2 assimilation plant/day approached a constant rate following 2 to 3 weeks growth. Composite results suggested a simple relationship for sucessive growth where accumulated leaf carbohydrate in excess of 200 milligrams/plant·day could be expected to be partitioned to other plant segments.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell D. E. A simple, reliable, and expandable monitor and control system for gas-exchange analysis. Anal Biochem. 1980 Jul 1;105(2):287–290. doi: 10.1016/0003-2697(80)90459-5. [DOI] [PubMed] [Google Scholar]
- Chatterton N. J., Silvius J. E. Photosynthate Partitioning into Starch in Soybean Leaves: II. IRRADIANCE LEVEL AND DAILY PHOTOSYNTHETIC PERIOD DURATION EFFECTS. Plant Physiol. 1981 Feb;67(2):257–260. doi: 10.1104/pp.67.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. B., Zelitch I. Relationship between Net CO(2) Assimilation and Dry Weight Accumulation in Field-Grown Tobacco. Plant Physiol. 1982 Sep;70(3):677–685. doi: 10.1104/pp.70.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
