Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2023 Nov 20;54(6):1085–1090. [Article in Chinese] doi: 10.12182/20231160107

肾小管上皮细胞应激性衰老在糖尿病肾病中的研究进展

Research Progress in Stress-Induced Senescence of Renal Tubular Cells in Diabetic Nephropathy

香伶 易 1, 娅妮 何 1, 客宏 陈 1,Δ
PMCID: PMC10752771  PMID: 38162078

Abstract

糖尿病肾病(diabetic nephropathy, DN)是导致终末期肾脏疾病的首要病因。肾小管间质损伤是DN进展为终末期肾脏疾病的重要病理生理基础。肾小管上皮细胞应激性衰老是引起肾小管间质损伤的关键环节。近年来,研究发现肾小管上皮细胞中的内质网、线粒体及溶酶体等细胞器在DN中受到不同程度的损伤,并且它们的功能失衡可以通过引起肾小管上皮细胞应激性衰老导致细胞和组织器官的持续损伤,进而推动疾病进展。然而目前DN中肾小管上皮细胞应激性衰老导致衰老微环境变化的核心机制尚不清楚,且其细胞器失去稳态的发生机制尚待进一步研究。 本综述总结了DN背景下的肾小管损伤、肾小管上皮细胞应激性衰老及其与细胞器的特定病理生理机制,以便为下一步研究以及开发新治疗策略提供参考。

Keywords: 肾小管上皮细胞, 应激性衰老, 糖尿病肾病, 综述


糖尿病已成为威胁人类健康的重大慢性疾病之一,是21世纪全球关注的重大公共卫生问题。截至2021年,全世界有5.37亿成人糖尿病患者,预计到2045年将增至7.83亿[1]。肾脏是糖尿病最易累及的靶器官之一,约20%~40% 的糖尿病患者发展为糖尿病肾病(diabetic nephrology, DN)。DN起病隐匿,呈进行性发展,已成为全球范围内终末期肾脏病(end-stage renal disease, ESRD)的首要病因[2]

自然性衰老是随着年龄增加细胞端粒缩短导致后续出现细胞肥大、停止增殖而发生细胞周期停滞的表现。肾脏组织学变化主要为肾小球基底膜增厚、肾硬化[3]、细胞外基质积聚和系膜增宽[4],解剖学中主要与衰老相关的变化包括肾皮质体积缩小以及发生囊肿和肿瘤[5]。而应激性衰老是指在各种损伤应激及疾病状态下出现的DNA损伤以及DNA双链断裂损伤引发的细胞周期停滞,导致细胞无法增殖,出现细胞衰老样改变及分泌表型,在肾脏衰老和疾病中起着至关重要的作用。最新一项研究表明糖尿病db/db小鼠随着周龄增加微量白蛋白尿逐渐增加,而非糖尿病db/m小鼠第38周微量白蛋白尿才开始增加[6]。传统观点认为肾小球病变是DN最重要的病理改变,而最新提出的“DN肾小管假说”,认为糖尿病情况下高糖刺激近端肾小管病变(增生、肥大等),增强钠-糖转运蛋白对糖的重吸收,难以避免增强了水盐的重吸收,通过管球反馈加剧了肾小球滤过和滤过屏障负荷,引起DN早期病理改变,随后肾小管细胞发生应激性衰老,加速DN晚期进展为ESRD[7]。因此,肾小管细胞应激性衰老是导致DN疾病进展的重要细胞学事件。本文主要从肾小管损伤、肾小管上皮细胞(renal tubular epithelial cell, RTEC)应激性衰老在DN中的作用机制以及RTEC应激性衰老与细胞器的相关性研究几个方面进行综述,旨在为DN进展的防治提供依据。

1. 肾小管损伤是DN发病机制的重要环节

DN的发病机制十分复杂,涉及到肾小球血流动力学异常、遗传因素、代谢紊乱、肾小管间质炎症等。DN与其他类型肾小球肾炎的主要区别特征是肾小球结构的变化,如系膜扩张、毛细血管皱缩和足细胞丢失[8]。但糖尿病患者的肾小管亦会发生一系列结构性变化,如肾小管萎缩、间质纤维化、肾小管周围毛细血管稀疏等,均与肾功能下降密切相关[9],特别是肾小管间质损伤的程度与长期肾功能密切相关。

肾小管损伤在DN中发挥重要作用。首先,近端肾小管具备强大的重吸收功能,导致肾脏对氧气需求量颇高,因此RTEC对糖尿病状态下的代谢紊乱特别敏感。高血糖可独立导致急性肾小管坏死、肾小管细胞凋亡、上皮-间充质转化(epithelial-mesenchymal transition, EMT)和细胞外基质(extracellular matrixc, ECM)沉积。在糖代谢紊乱的早期阶段,近端肾小管因葡萄糖重吸收增加而肥大,这与活性氧(reactive oxygen species, ROS)生成、氧化损伤和转化生长因子-β(transforming growth factor-β, TGF-β)生成有关,这些效应导致近端小管细胞G1细胞周期停滞和衰老表型,从而促进间质炎症和纤维化[10-11]。其次,肾小管病变并非继发于肾小球,而是其早期和最初的特征性变化[12],糖尿病肾脏在高血糖发生数天后即可观察到肾小管肥大。除了糖尿病肾小球变化外,即使是白蛋白尿正常的患者,也可发现肾小管基底膜增厚,这是糖尿病肾脏早期结构异常之一[13]。第三,研究发现,约7%的患者在鲍曼囊和近端肾小管的关键交界处出现无功能肾小球萎缩[14]。在没有明显白蛋白尿的情况下,仍有26%的患者表现出肾小球-肾小管交界处异常[14]。既往研究提供了近端肾小管和肾小球之间逆行运输的证据[15],表明烟酰胺单核苷酸由近端RTEC释放并扩散回肾小球,导致足突消失和蛋白尿[16]。其他研究表明,近端肾小管损伤会导致足细胞损伤和更广泛的肾小球损伤。第四,最近研究发现,肾小管白蛋白尿是DN进展的预测因子[17]

目前越来越多的研究关注到肾小管损伤,肾小管损伤是影响DN进展的首要重要因素。但是肾小管细胞早期损伤的启动因素不明,特别是高糖代谢异常导致肾小管细胞损伤的启动因素不明确,且肾小管细胞损伤效应不全面。

2. RTEC应激性衰老与DN

近年来许多研究证实细胞应激性衰老是DN的重要病理特征之一。细胞应激性衰老是不依赖增龄的细胞早衰,细胞形态出现衰老样改变(包括细胞肥大扁平、胞核增大深染、染色质凝集等),其特点为细胞周期停滞和衰老相关分泌表型(senescence-associated secretory phenotype, SASP)。衰老细胞能通过SASP分泌大量炎性细胞因子、趋化因子、生长因子以及蛋白酶,导致组织慢性损伤和纤维化[18-19]。慢性肾脏疾病过程中肾脏细胞衰老不是常规随年龄增长的自然衰老,而是各种致病因素导致的细胞应激性衰老,而持续的早衰细胞的堆积反过来又会导致肾脏疾病的进展[20]

在DN早期,肾小管即可出现生长表型,呈现先肥大、后衰老的独特轨迹,可检测到RTEC衰老表型,即细胞周期激酶抑制物p16、p21和p27以及衰老相关β半乳糖苷酶(senescence-associated β galactosidase, SA-β-Gal)阳性[21],说明肾小管细胞应激性衰老是一种较早期的病理改变。研究发现晚期糖基化终末产物(advanced glycosylation end products, AGEs)受体(receptor of AGEs, RAGE)引发内质网蛋白质代谢稳态失衡,促使其关键分子激活转录因子4(activating transcription factor 4, ATF4)通过逆行通讯调控细胞核内的细胞周期蛋白激酶,导致细胞应激衰老[22]。腺病毒转染过表达RAGE,促进内质网蛋白质稳态失衡,导致肾实质细胞衰老及SASP,促使DN肾间质炎症及纤维化[23]。诱骗受体(decoy receptor 2, DcR2)是肿瘤坏死因子配体的跨膜受体,研究发现DcR2特异性高表达于DN患者衰老RTEC。分子机制研究表明DcR2与过氧化还原酶1结合并抑制其活性,介导SASP[24];DcR2通过激活内质网应激伴侣蛋白G蛋白偶联受体78(G protein coupled receptor 78, GRP78)介导衰老细胞凋亡抵抗表型,二者共同形成衰老细胞损伤效应的“恶性循环”,引起肾实质细胞衰老进程中亚细胞器交互作用,加速DN肾纤维化[25]。体外研究发现高糖引起RTEC出现衰老表型,同时出现线粒体碎片积聚。进而探明高糖环境下线粒体自噬障碍通过线粒体膜电位和应激代谢产物的变化引起细胞衰老。进一步利用DN患者肾组织和线粒体自噬受体视神经蛋白(optineurin, OPTN)、Parkin基因敲除小鼠,证明线粒体自噬在DN RTEC应激性衰老中的保护作用[26-28]。当采用p21基因敲除鼠构建DN模型时,发现蛋白尿水平降低、肾间质纤维化明显改善,进而延缓了DN进展[29]。以上表明肾小管细胞衰老在DN进展中发挥重要作用。进一步机制研究发现抗衰老基因Klotho缺失促使链脲佐菌素糖尿病大鼠肾脏损害加重[30]。反之,激活抗衰老基因Sirtuins可以减轻糖尿病肾间质损害[31]。上述研究表明RTEC应激性衰老在DN进展中发挥关键的推动与致病作用。但RTEC应激性衰老对肾脏毗邻及周边的内皮细胞等引起的空间及时间上的衰老微环境变化尚不清楚,目前也尚无动态观察DN损伤过程中RTEC衰老环境变化,未阐明DN进展的核心机制。

3. RTEC应激性衰老与细胞器相关性研究

在DN期间,RTEC中的关键细胞器发生病理变化,例如,内质网蛋白折叠机制干扰并随后导致内质网腔中错误折叠和未折叠的蛋白质积累[32]。线粒体裂变和融合不平衡,线粒体功能被破坏[33]。溶酶体膜完整性被破坏,内容物渗漏导致溶酶体耗竭[34]

3.1. 内质网应激

内质网应激(endoplasmic reticulum stress, ERS)是指细胞内质网内正常功能和稳态的破坏,这是由于未折叠或错误折叠的蛋白质的积累以及蛋白质折叠能力和蛋白质负荷之间失衡引起的。在DN中,ERS主要由高血糖、蛋白尿以及AGEs和游离脂肪酸触发[35]

AGE-RAGE轴激活NF-κB通路[36],诱导ERS抑制自噬[37],并促进p16和p21表达,导致RTEC应激性衰老增加[22-23]。研究证实在DN患者肾组织中,RAGE、ERS标志物GRP78和衰老标志物p21的表达升高与SA-β-gal活性增强呈正相关,且ATF4和衰老标志物p16的表达上调。应用AGEs对小鼠RTEC进行刺激后,SA-β-gal及处于G0G1期细胞的比例增加,RAGE、GRP78、p21、ATF4及p16的表达上调。ERS诱导剂、RAGE过表达或ATF4过表达模拟了AGEs诱导的细胞衰老,p21或p16基因沉默则显著抑制了肾小管细胞衰老。而ERS抑制剂、RAGE阻断剂及ATF4基因沉默则减轻了AGEs诱导的ERS、p21及p16表达和细胞衰老。RAGE激活ERS增加p21信号传导及ERS调控的ATF4/p16通路促进了DN进展过程中RTEC的早衰[22-23]。相反,在过度表达AGE解毒剂乙二醛酶Ⅰ的啮齿动物中观察到衰老减少[38]。一些研究已经证明了各种抑制剂靶向ERS对DN的有益作用。西他列汀是一种二肽基肽酶-4抑制剂,通过上调沉默调节蛋白1改善白蛋白处理的RTEC和糖尿病DBA2/J(D1)小鼠肾脏中的ERS[39]。更深入地了解ERS在DN肾小管应激性衰老中的作用和作用机制将有助于开发新的治疗靶点。

尽管ERS与应激性衰老有相关性,但是ERS如何导致RTEC应激性衰老的具体机制,异常蛋白质积累如何导致细胞周期停滞的具体分子机制并未明确。同时折叠蛋白为非特异性蛋白,且存在于细胞质,如何引起细胞核中的细胞周期停滞,其机制尚需进一步揭示。

3.2. 线粒体自噬

RTEC作为肾脏的重要组成部分,富含大量线粒体,具有高代谢和高能耗的功能需求,是肾实质细胞中最易发生应激衰老的细胞[40]。在用高糖治疗的小鼠的RTEC和DN患者的肾活检中,观察到线粒体自噬水平降低[26]。此外,有证据表明糖尿病小鼠肾组织中的线粒体自噬减少,线粒体PTEN诱导假定激酶1(PTEN-induced putative kinase 1, PINK1)、Parkin、LC3Ⅰ(mito-LC3Ⅰ)、Beclin1和自噬相关蛋白5(autophagy related 5, Atg5)的表达降低[41]。体外原代人RTEC研究发现通过PINK/Parkin介导的线粒体自噬的干扰,线粒体质量可以受到控制[26, 28, 42-43]。在DN模型中,Parkin敲除会导致许多损伤特征,例如细胞凋亡、炎症、纤维化、RTEC早衰和肾功能下降[28]。线粒体分裂或线粒体自噬抑制剂Mdivi-1可以加速RTEC的衰老[26],而在高糖刺激的HK2和LLC-PK1细胞中,小管特异性酶MIOX的过表达抑制PINK1/Parkin诱导的线粒体自噬,从而导致糖尿病小鼠的肾ROS生成增加和肾小管间质损伤[44]。高糖诱导的近端RTEC中线粒体自噬失调,硫氧还蛋白互作蛋白(thioredoxin interacting protein, Txnip)siRNA通过抑制mTOR信号通路和Bcl2/腺病毒E1B相互作用蛋白3(Bcl2/adenovirus E1B 19 kDa interacting protein 3, BNIP3)的表达挽救了肾小管线粒体自噬[45]。大量证据表明,线粒体自噬受损可能在DN的发病机制中起根本性作用。

但是PINK1在小鼠RTEC中的过表达未能减轻线粒体功能障碍和细胞衰老。相比之下,线粒体形成增加,线粒体ROS积累减少,并且通过OPTN的过表达观察到线粒体自噬的激活,最终缓解了肾小管细胞早衰[26]。此外,OPTN表达降低导致肾小管间质炎症的发展,其机制可能与受损线粒体的积累和NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3, NLRP3)炎症小体的激活有关,这反过来又导致半胱天冬酶-1和IL-1的切割以及IL-1和IL-18释放的显著增加[27]。这表明OPTN可能是RTEC中线粒体自噬最重要的蛋白质调节因子。

线粒体定向辅酶Q(mitochondrial-targeted coenzyme Q, MitoQ)是线粒体靶向抗氧化剂,可增强线粒体自噬和清除肾脏中受损的线粒体。MitoQ由泛醌(氧化的辅酶Q10)分子与三苯基膦阳离子部分结合组成,可以有效防止线粒体氧化损伤[27, 46-47]。口服MitoQ改善了1型糖尿病模型小鼠的肾功能和肾小管间质纤维化[48],此外,有证据表明MitoQ治疗还改善了高糖条件下的肾小管损伤和细胞凋亡,这与核因子-E2相关因子2和PINK/Parkin途径上调以调节肾小管中线粒体吞噬作用密切相关[49]。D-葡萄糖酸盐疗法逆转了链脲佐菌素诱导的糖尿病小鼠线粒体自噬抑制,并改善了肾小管细胞的完整性[44]。这些结果表明,线粒体自噬的激活,特别是PINK1/Parkin途径的激活,是改善糖尿病诱导的肾损伤的有吸引力的靶标。

线粒体自噬的激活存在多条通路,在DN中最重要的途径、线粒体自噬障碍占比最大的途径尚未进行科学的比较及得到认可,另外针对线粒体自噬的治疗措施缺乏新药的研发及临床证据的支撑,这是后续可能需要进一步深入研究的方面。

3.3. 溶酶体功能障碍

溶酶体是细胞稳态所必需的主要分解代谢细胞器,存在于除红细胞以外的所有动物细胞类型中,在调节钙信号传导、营养反应、细胞内成分自噬降解等多个过程中发挥着关键作用。细胞衰老部分取决于与线粒体相关的溶酶体功能障碍。溶酶体功能障碍会诱发线粒体周转失衡,导致产生更多的ROS,而ROS又会反过来攻击溶酶体[50]。在ROS-衰老中,线粒体功能障碍发挥启动作用,而溶酶体功能障碍则更直接地导致衰老[51]

在一些与年龄相关的疾病如帕金森病中观察到由溶酶体膜通透性(lysosomal membrane permeability, LMP)引起的溶酶体-组织蛋白酶转运可诱导溶酶体依赖性细胞死亡[52-53]。AGEs是长期高糖水平产生的,通过RTEC中的内吞作用被溶酶体降解,并且与DN的进展有关[54]。在高血糖状态下,除AGEs产生增加外,溶酶体清除率降低也会增加DN患者的RTEC中AGEs积累。RTEC在AGEs刺激下引发溶酶体膜通透,导致组织蛋白酶B和L活性降低、溶酶体酸化和DQ-卵清蛋白降解缺陷。然而,AGEs的这些作用可被AGEs特异性受体抗体或抗氧化剂所阻断,这表明在DN条件下,氧化应激可能在溶酶体功能障碍中发挥重要作用,并进一步导致RTEC衰老和凋亡[55]。溶酶体组织蛋白酶负责在衰老过程中启动和执行细胞死亡[56],现已证明组织蛋白酶B、D、L和S的失调是肾脏疾病发生或进展的原因[57]。在HK-2中,AGEs暴露导致组织蛋白酶B和L活性显著降低。RAGE抗体预处理部分提高了溶酶体的降解能力,表明AGE-RAGE相互作用是溶酶体功能障碍的潜在机制。AGE-RAGE轴通过促进氧化应激的产生在LMP发生中发挥了至关重要的作用[55]。在DN患者肾组织中cathepsin D的上调抑制了AGEs引发的LMP 、线粒体膜电位的丧失及细胞衰老,这表明cathepsin D在DN中具有保护作用[34]。这些结果表明,AGEs可以通过AGE-RAGE相互作用诱导LMP,随后引发AGEs的进一步积累及细胞衰老,最终加剧DN的进展。

溶酶体功能障碍会导致许多代谢异常物质的堆积,引发上述描述的ERS及线粒体自噬,但目前临床上难以针对溶酶体的活性进行适度调控及药物研发,因为过度的溶酶体激活会导致细胞损伤,不足的溶酶体激活可能会导致代谢功能减弱、受损细胞器及异常蛋白质堆积,如何适度调控溶酶体活性是需要深入研究的科学问题。

4. 总结与展望

以往对于DN发病机制的研究多集中在肾小球。近年来研究显示,在DN早期肾小管病变就独立于肾小球病变出现,并通过多种病理生理学机制影响肾小球。RTEC损伤在肾小管病变中起中心作用,ERS、线粒体自噬及溶酶体功能障碍相互作用并促进RTEC应激性衰老,细胞衰老不仅会阻碍RTEC的增殖和再生,还会导致SASP的释放,从而促进炎症和纤维化,这种现象可以定义为“沼泽效应”。衰老细胞特有的SASP和抗凋亡能力使其促进周围细胞向衰老细胞转化,导致不断堆积,形成“沼泽”,并不断拖拽正常细胞扩大其体积。大量衰老细胞会导致慢性炎症的发生,局部慢性炎症会扩散到整个肾脏,进一步导致DN进展,最终导致肾功能衰竭。未来可在以下几个方面进行深入研究,首先是在DN环境中RTEC应激性衰老导致细胞衰老微环境的变化的核心机制;其次是对RTEC应激性衰老中细胞器失去稳态的发生机制进一步研究,包括ERS中存在于细胞质中的异常蛋白质如何引发细胞核中的细胞周期停滞,对线粒体自噬障碍中最重要的途径进行研究与科学比较,如何针对性适度调控溶酶体活性进行药物研发。这些研究方向有可能为寻求治疗DN新靶点、新药物提供新思路。

*    *    *

作者贡献声明 易香伶负责调查研究和初稿写作,何娅妮负责研究项目管理和监督指导,陈客宏负责论文构思、经费获取、监督指导、可视化和审读与编辑写作。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。

利益冲突 所有作者均声明不存在利益冲突

Funding Statement

国家自然科学基金(No. 82270768)、重庆市课题(No. CSTB2023NSCQ-MSX0584)和重点实验室开放课题(No. 2022YSZX-JCX0007CSTB)资助

Contributor Information

香伶 易 (Xiangling YI), Email: Yi_Xiangling@163.com.

客宏 陈 (Kehong CHEN), Email: kehong_chen@126.com.

References

  • 1.SUN H, SAEEDI P, KARURANGA S, et al IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.CHENG H T, XU X, LIM P S, et al worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015. Diabetes Care. 2021;44(1):89–97. doi: 10.2337/dc20-1913. [DOI] [PubMed] [Google Scholar]
  • 3.NYENGAARD J R, BENDTSEN T F Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232(2):194–201. doi: 10.1002/ar.1092320205. [DOI] [PubMed] [Google Scholar]
  • 4.SILVA F G The aging kidney: a review-part Ⅱ. Int Urol Nephrol. 2005;37(2):419–432. doi: 10.1007/s11255-004-0874-5. [DOI] [PubMed] [Google Scholar]
  • 5.DENIC A, GLASSOCK R J, RULE A D Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis. 2016;23(1):19–28. doi: 10.1053/j.ackd.2015.08.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.YOON S G, GHEE J Y, YOO J A, et al Role of NADPH oxidases in renal aging. Gerontology. 2023;69(7):852–865. doi: 10.1159/000529392. [DOI] [PubMed] [Google Scholar]
  • 7.VALLON V, THOMSON S C The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 2020;16(6):317–336. doi: 10.1038/s41581-020-0256-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.DOSHI S M, FRIEDMAN A N Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol. 2017;12(8):1366–1373. doi: 10.2215/CJN.11111016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.SLYNE J, SLATTERY C, MCMORROW T, et al New developments concerning the proximal tubule in diabetic nephropathy: in vitro models and mechanisms. Nephrol Dial Transplant. 2015;30(Suppl 4):iv60-7. doi: 10.1093/ndt/gfv264. [DOI] [PubMed] [Google Scholar]
  • 10.CHEVALIER R L The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol. 2016;311(1):F145–F161. doi: 10.1152/ajprenal.00164.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.VALLON V The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1009–R1022. doi: 10.1152/ajpregu.00809.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.GILBERT R E Proximal tubulopathy: prime mover and key therapeutic target in diabetic kidney disease. Diabetes. 2017;66(4):791–800. doi: 10.2337/db16-0796. [DOI] [PubMed] [Google Scholar]
  • 13.FU H, LIU S, BASTACKY S I, et al Diabetic kidney diseases revisited: a new perspective for a new era. Mol Metab. 2019;30:250–263. doi: 10.1016/j.molmet.2019.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.WHITE K E, MARSHALL S M, BILOUS R W Prevalence of atubular glomeruli in type 2 diabetic patients with nephropathy. Nephrol Dial Transplant. 2008;23(11):3539–3545. doi: 10.1093/ndt/gfn351. [DOI] [PubMed] [Google Scholar]
  • 15.HASEGAWA K, WAKINO S, SIMIC P, et al Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med. 2013;19(11):1496–1504. doi: 10.1038/nm.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.NIHALANI D, SUSZTAK K Sirt1-Claudin-1 crosstalk regulates renal function. Nat Med. 2013;19(11):1371–1372. doi: 10.1038/nm.3386. [DOI] [PubMed] [Google Scholar]
  • 17.KIM S S, SONG S H, KIM I J, et al Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care. 2013;36(3):656–661. doi: 10.2337/dc12-0849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.SALMINEN A Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev. 2021;67:101280. doi: 10.1016/j.arr.2021.101280. [DOI] [PubMed] [Google Scholar]
  • 19.STURMLECHNER I, DURIK M, SIEBEN C J, et al Cellular senescence in renal ageing and disease. Nat Rev Nephrol. 2017;13(2):77–89. doi: 10.1038/nrneph.2016.183. [DOI] [PubMed] [Google Scholar]
  • 20.SATO Y, YANAGITA M Immunology of the ageing kidney. Nat Rev Nephrol. 2019;15(10):625–640. doi: 10.1038/s41581-019-0185-9. [DOI] [PubMed] [Google Scholar]
  • 21.SATRIANO J, MANSOURY H, DENG A, et al Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. Am J Physiol Cell Physiol. 2010;299(2):C374–C380. doi: 10.1152/ajpcell.00096.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.LIU J, YANG J R, CHEN X M, et al Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy. Am J Physiol Cell Physiol. 2015;308(8):C621–C630. doi: 10.1152/ajpcell.00096.2014. [DOI] [PubMed] [Google Scholar]
  • 23.LIU J, HUANG K, CAI G Y, et al Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell Signal. 2014;26(1):110–121. doi: 10.1016/j.cellsig.2013.10.002. [DOI] [PubMed] [Google Scholar]
  • 24.CHEN J, CHEN K H, XIAO F, et al Decoy receptor 2 mediation of the senescent phenotype of tubular cells by interacting with peroxiredoxin 1 presents a novel mechanism of renal fibrosis in diabetic nephropathy. Kidney Int. 2020;98(3):645–662. doi: 10.1016/j.kint.2020.03.026. [DOI] [PubMed] [Google Scholar]
  • 25.CHEN J, CHEN K H, WANG L M, et al Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis. 2022;13(6):522. doi: 10.1038/s41419-022-04972-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.CHEN K, DAI H, YUAN J, et al Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 2018;9(2):105. doi: 10.1038/s41419-017-0127-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.CHEN K, FENG L, HU W, et al Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy. FASEB J. 2019;33(3):4571–4585. doi: 10.1096/fj.201801749RRR. [DOI] [PubMed] [Google Scholar]
  • 28.CHEN K, CHEN J, WANG L, et al Parkin ubiquitinates GATA4 and attenuates the GATA4/GAS1 signaling and detrimental effects on diabetic nephropathy. FASEB J. 2020;34(7):8858–8875. doi: 10.1096/fj.202000053R. [DOI] [PubMed] [Google Scholar]
  • 29.Al-DOUAHJI M, BRUGAROLAS J, BROWN P A, et al The cyclin kinase inhibitor p21WAF1/CIP1 is required for glomerular hypertrophy in experimental diabetic nephropathy. Kidney Int. 1999;56(5):1691–1699. doi: 10.1046/j.1523-1755.1999.00728.x. [DOI] [PubMed] [Google Scholar]
  • 30.LIN Y, KURO-O M, SUN Z Genetic deficiency of anti-aging gene klotho exacerbates early nephropathy in STZ-induced diabetes in male mice. Endocrinology. 2013;154(10):3855–3863. doi: 10.1210/en.2013-1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.KUME S, KITADA M, KANASAKI K, et al Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Arch Pharm Res. 2013;36(2):230–236. doi: 10.1007/s12272-013-0019-4. [DOI] [PubMed] [Google Scholar]
  • 32.WANG Y, JIN M, CHENG C K, et al Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne) 2023;14:1238927. doi: 10.3389/fendo.2023.1238927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.TANG C, LIVINGSTON M J, LIU Z, et al Autophagy in kidney homeostasis and disease. Nat Rev Nephrol. 2020;16(9):489–508. doi: 10.1038/s41581-020-0309-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.WU M, ZHANG M, ZHANG Y, et al Relationship between lysosomal dyshomeostasis and progression of diabetic kidney disease. Cell Death Dis. 2021;12(11):958. doi: 10.1038/s41419-021-04271-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.FAN Y, LEE K, WANG N, et al The role of endoplasmic reticulum stress in diabetic nephropathy. Curr Diab Rep. 2017;17(3):17. doi: 10.1007/s11892-017-0842-y. [DOI] [PubMed] [Google Scholar]
  • 36.SANAJOU D, GHORBANI HAGHJO A, ARGANI H, et al AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur J Pharmacol. 2018;833:158–164. doi: 10.1016/j.ejphar.2018.06.001. [DOI] [PubMed] [Google Scholar]
  • 37.SHI M, YANG S, ZHU X, et al The RAGE/STAT5/autophagy axis regulates senescence in mesangial cells. Cell Signal. 2019;62:109334. doi: 10.1016/j.cellsig.2019.05.019. [DOI] [PubMed] [Google Scholar]
  • 38.HIRAKAWA Y, JAO T M, INAGI R Pathophysiology and therapeutics of premature ageing in chronic kidney disease, with a focus on glycative stress. Clin Exp Pharmacol Physiol. 2017;44(Suppl 1):70–77. doi: 10.1111/1440-1681.12777. [DOI] [PubMed] [Google Scholar]
  • 39.ZHANG Q, JIA J, HE L, et al Sitagliptin ameliorates ER stress in diabetic kidney disease through upregulation of SIRT1. Diabetic Nephropathy. 2021;1(1):33–41. doi: 10.2478/dine-2021-0007. [DOI] [Google Scholar]
  • 40.XIONG Y, ZHOU L The signaling of cellular senescence in diabetic nephropathy. Oxid Med Cell Longev. 2019;2019:7495629. doi: 10.1155/2019/7495629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.FENG J, LU C, DAI Q, et al SIRT3 facilitates amniotic fluid stem cells to repair diabetic nephropathy through protecting mitochondrial homeostasis by modulation of mitophagy. Cell Physiol Biochem. 2018;46(4):1508–1524. doi: 10.1159/000489194. [DOI] [PubMed] [Google Scholar]
  • 42.KANG L, LIU S, LI J, et al The mitochondria-targeted anti-oxidant MitoQ protects against intervertebral disc degeneration by ameliorating mitochondrial dysfunction and redox imbalance. Cell Prolif. 2020;53(3):e12779. doi: 10.1111/cpr.12779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.SONG Y M, LEE W K, LEE Y H, et al Metformin restores parkin-mediated mitophagy, suppressed by cytosolic p53. Int J Mol Sci. 2016;17(1):122. doi: 10.3390/ijms17010122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.ZHAN M, USMAN I M, SUN L, et al Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J Am Soc Nephrol. 2015;26(6):1304–1321. doi: 10.1681/ASN.2014050457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.HUANG C, ZHANG Y, KELLY D J, et al Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Sci Rep. 2016;6:29196. doi: 10.1038/srep29196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.JAMES A M, SHARPLEY M S, MANAS A R, et al Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem. 2007;282(20):14708–14718. doi: 10.1074/jbc.M611463200. [DOI] [PubMed] [Google Scholar]
  • 47.MURPHY M P, SMITH R A Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–656. doi: 10.1146/annurev.pharmtox.47.120505.105110. [DOI] [PubMed] [Google Scholar]
  • 48.CHACKO B K, REILY C, SRIVASTAVA A, et al Prevention of diabetic nephropathy in Ins2(+/)(-)(AkitaJ) mice by the mitochondria-targeted therapy MitoQ. Biochem J. 2010;432(1):9–19. doi: 10.1042/BJ20100308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.XIAO L, XU X, ZHANG F, et al The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 2017;11:297–311. doi: 10.1016/j.redox.2016.12.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.PARK J T, LEE Y S, CHO K A, et al Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence. Ageing Res Rev. 2018;47:176–182. doi: 10.1016/j.arr.2018.08.003. [DOI] [PubMed] [Google Scholar]
  • 51.TAI H, WANG Z, GONG H, et al Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy. 2017;13(1):99–113. doi: 10.1080/15548627.2016.1247143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.SERRANO-PUEBLA A, BOYA P Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann N Y Acad Sci. 2016;1371(1):30–44. doi: 10.1111/nyas.12966. [DOI] [PubMed] [Google Scholar]
  • 53.WANG F, GOMEZ-SINTES R, BOYA P Lysosomal membrane permeabilization and cell death. Traffic. 2018;19(12):918–931. doi: 10.1111/tra.12613. [DOI] [PubMed] [Google Scholar]
  • 54.RABBANI N, THORNALLEY P J Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018;93(4):803–813. doi: 10.1016/j.kint.2017.11.034. [DOI] [PubMed] [Google Scholar]
  • 55.LIU W J, SHEN T T, CHEN R H, et al Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy. J Biol Chem. 2015;290(33):20499–20510. doi: 10.1074/jbc.M115.666354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.STOKA V, TURK V, TURK B Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev. 2016;32:22–37. doi: 10.1016/j.arr.2016.04.010. [DOI] [PubMed] [Google Scholar]
  • 57.GUO J, ZHENG H J, ZHANG W, et al Accelerated kidney aging in diabetes mellitus. Oxid Med Cell Longev. 2020;2020:1234059. doi: 10.1155/2020/1234059. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES