Abstract
The magnitude and role of dark CO2 fixation were examined in nodules of intact soybean plants (Harosoy 63 × Rhizobium japonicum strain USDA 16). The estimated rate of nodule dark CO2 fixation, based on a 2 minute pulse-feed with 14CO2 under saturating conditions, was 102 micromoles per gram dry weight per hour. This was equivalent to 14% of net nodule respiration. Only 18% of this CO2 fixation was estimated to be required for organic and amino acid synthesis for growth and export processes. The major portion (75-92%) of fixed label was released as CO2 within 60 minutes. The labeling pattern during pulse-chase experiments was consistent with CO2 fixation by phosphoenolpyruvate carboxylase. During the chase, the greatest loss of label occurred in organic acids. Exposure of nodulated roots to Ar:O2 (80:20) did not affect dark CO2 fixation, while exposure to O2:CO2 (95:5) resulted in 54% inhibition. From these results, it was concluded that at least 66% of dark CO2 fixation in soybean may be involved with the production of organic acids, which when oxidized would be capable of providing at least 48% of the requirement for ATP equivalents to support nitrogenase activity.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boland M. J., Schubert K. R. Purine biosynthesis and catabolism in soybean root nodules: incorporation of 14C from 14CO2 into xanthine. Arch Biochem Biophys. 1982 Feb;213(2):486–491. doi: 10.1016/0003-9861(82)90574-4. [DOI] [PubMed] [Google Scholar]
- Christeller J. T., Laing W. A., Sutton W. D. Carbon Dioxide Fixation by Lupin Root Nodules: I. Characterization, Association with Phosphoenolpyruvate Carboxylase, and Correlation with Nitrogen Fixation during Nodule Development. Plant Physiol. 1977 Jul;60(1):47–50. doi: 10.1104/pp.60.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coker G. T., Schubert K. R. Carbon Dioxide Fixation in Soybean Roots and Nodules: I. CHARACTERIZATION AND COMPARISON WITH N(2) FIXATION AND COMPOSITION OF XYLEM EXUDATE DURING EARLY NODULE DEVELOPMENT. Plant Physiol. 1981 Apr;67(4):691–696. doi: 10.1104/pp.67.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laing W. A., Christeller J. T., Sutton W. D. Carbon Dioxide Fixation by Lupin Root Nodules: II. Studies with C-labeled Glucose, the Pathway of Glucose Catabolism, and the Effects of Some Treatments That Inhibit Nitrogen Fixation. Plant Physiol. 1979 Mar;63(3):450–454. doi: 10.1104/pp.63.3.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Layzell D. B., Larue T. A. Modeling C and N transport to developing soybean fruits. Plant Physiol. 1982 Nov;70(5):1290–1298. doi: 10.1104/pp.70.5.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Layzell D. B., Rainbird R. M., Atkins C. A., Pate J. S. Economy of Photosynthate Use in Nitrogen-fixing Legume Nodules: Observations on Two Contrasting Symbioses. Plant Physiol. 1979 Nov;64(5):888–891. doi: 10.1104/pp.64.5.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClure P. R., Coker G. T., Schubert K. R. Carbon Dioxide Fixation in Roots and Nodules of Alnus glutinosa: I. Role of Phosphoenolpyruvate Carboxylase and Carbamyl Phosphate Synthetase in Dark CO(2) Fixation, Citrulline Synthesis, and N(2) Fixation. Plant Physiol. 1983 Mar;71(3):652–657. doi: 10.1104/pp.71.3.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pate J. S., Atkins C. A., Layzell D. B., Shelp B. J. Effects of n(2) deficiency on transport and partitioning of C and N in a nodulated legume. Plant Physiol. 1984 Sep;76(1):59–64. doi: 10.1104/pp.76.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUTTER W. J., LARDY H. A. Purification and properties of pigeon liver malic enzyme. J Biol Chem. 1958 Aug;233(2):374–382. [PubMed] [Google Scholar]
- Reibach P. H., Streeter J. G. Metabolism of C-labeled photosynthate and distribution of enzymes of glucose metabolism in soybean nodules. Plant Physiol. 1983 Jul;72(3):634–640. doi: 10.1104/pp.72.3.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ronson C. W., Lyttleton P., Robertson J. G. C(4)-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4284–4288. doi: 10.1073/pnas.78.7.4284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stovall I., Cole M. Organic Acid Metabolism by Isolated Rhizobium japonicum Bacteroids. Plant Physiol. 1978 May;61(5):787–790. doi: 10.1104/pp.61.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vance C. P., Stade S., Maxwell C. A. Alfalfa root nodule carbon dioxide fixation : I. Association with nitrogen fixation and incorporation into amino acids. Plant Physiol. 1983 Jun;72(2):469–473. doi: 10.1104/pp.72.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogels G. D., Van der Drift C. Differential analyses of glyoxylate derivatives. Anal Biochem. 1970 Jan;33(1):143–157. doi: 10.1016/0003-2697(70)90448-3. [DOI] [PubMed] [Google Scholar]
- Walsh K. B., Layzell D. B. Carbon and nitrogen assimilation and partitioning in soybeans exposed to low root temperatures. Plant Physiol. 1986 Jan;80(1):249–255. doi: 10.1104/pp.80.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]