Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 May;81(1):247–252. doi: 10.1104/pp.81.1.247

Electron Paramagnetic Resonance Characterization of Membrane Bound Iron-Sulfur Clusters and Aconitase in Plant Mitochondria

Renaud Brouquisse 1, Jacques Gaillard 1,1, Roland Douce 1
PMCID: PMC1075314  PMID: 16664783

Abstract

Electron paramagnetic resonance (EPR) characteristics of the iron-sulfur clusters of potato tuber mitochondria have been examined in various subfractions of the mitochondria. We confirm that EPR signals comparable to those of the iron-sulfur proteins of mammalian mitochondria respiratory complexes are also present in plant mitochondria. Two distinct iron-sulfur centers paramagnetic in the oxidized state exhibit signals which differ in their detailed line shape and field position. One of these which is present in the inner membrane corresponds to center S.3. The EPR spectrum of the soluble fraction revealed the presence of another center with a low field maximum at g = 2.03 and is associated with aconitase. The EPR signal observed in the mitochondrial matrix from potato tuber and characteristic of 3Fe cluster is significantly changed in shape after addition of citrate and differs clearly from the spectrum of pig heart mitochondrial aconitase. The aconitase in plant mitochondria differs from that of mammalian mitochondria by several features.

Full text

PDF
247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackrell B. A., Kearney E. B., Mims W. B., Peisach J., Beinert H. Iron-sulfur cluster 3 of beef heart succinate-ubiquinone oxidoreductase is a 3-iron cluster. J Biol Chem. 1984 Apr 10;259(7):4015–4018. [PubMed] [Google Scholar]
  2. Beinert H., Ackrell B. A., Kearney E. B., Singer T. P. Iron-sulfur components of succinate dehydrogenase: stoichiometry and kinetic behavior in activated preparations. Eur J Biochem. 1975 May;54(1):185–194. doi: 10.1111/j.1432-1033.1975.tb04128.x. [DOI] [PubMed] [Google Scholar]
  3. Beinert H., Albracht S. P. New insights, ideas and unanswered questions concerning iron-sulfur clusters in mitochondria. Biochim Biophys Acta. 1982 Dec 31;683(3-4):245–277. doi: 10.1016/0304-4173(82)90003-9. [DOI] [PubMed] [Google Scholar]
  4. Beinert H., Thomson A. J. Three-iron clusters in iron-sulfur proteins. Arch Biochem Biophys. 1983 Apr 15;222(2):333–361. doi: 10.1016/0003-9861(83)90531-3. [DOI] [PubMed] [Google Scholar]
  5. Bowyer J. R., Edwards C. A., Ohnishi T., Trumpower B. L. An analogue of ubiquinone which inhibits respiration by binding to the iron-sulfur protein of the cytochrome b-c1 segment of the mitochondrial respiratory chain. J Biol Chem. 1982 Jul 25;257(14):8321–8330. [PubMed] [Google Scholar]
  6. Cammack R., Palmer J. M. EPR studies of iron-sulphur proteins of plant mitochondria. Ann N Y Acad Sci. 1973 Dec 31;222:816–823. doi: 10.1111/j.1749-6632.1973.tb15307.x. [DOI] [PubMed] [Google Scholar]
  7. Cammack R., Palmer J. M. Iron-sulphur centres in mitochondria from Arum maculatum spadix with very high rates of cyanide-resistant respiration. Biochem J. 1977 Sep 15;166(3):347–355. doi: 10.1042/bj1660347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emptage M. H., Dreyers J. L., Kennedy M. C., Beinert H. Optical and EPR characterization of different species of active and inactive aconitase. J Biol Chem. 1983 Sep 25;258(18):11106–11111. [PubMed] [Google Scholar]
  9. Esposti M. D., Flamini E., Zannoni D. Functional Characterization and Partial Purification of the Ubiquinol-Cytochrome c Oxidoreductase from Higher Plant Mitochondria (Helianthus tuberosus). Plant Physiol. 1985 Mar;77(3):758–764. doi: 10.1104/pp.77.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson M. K., Thomson A. J., Richards A. J., Peterson J., Robinson A. E., Ramsay R. R., Singer T. P. Characterization of the Fe-S cluster in aconitase using low temperature magnetic circular dichroism spectroscopy. J Biol Chem. 1984 Feb 25;259(4):2274–2282. [PubMed] [Google Scholar]
  11. Journet E. P., Douce R. Mechanisms of citrate oxidation by percoll-purified mitochondria from potato tuber. Plant Physiol. 1983 Jul;72(3):802–808. doi: 10.1104/pp.72.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kennedy M. C., Emptage M. H., Dreyer J. L., Beinert H. The role of iron in the activation-inactivation of aconitase. J Biol Chem. 1983 Sep 25;258(18):11098–11105. [PubMed] [Google Scholar]
  13. Maguire J. J., Johnson M. K., Morningstar J. E., Ackrell B. A., Kearney E. B. Electron paramagnetic resonance studies of mammalian succinate dehydrogenase. Detection of the tetranuclear cluster S2. J Biol Chem. 1985 Sep 15;260(20):10909–10912. [PubMed] [Google Scholar]
  14. Møller I. M., Johnston S. P., Palmer J. M. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria. Biochem J. 1981 Feb 15;194(2):487–495. doi: 10.1042/bj1940487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neuburger M., Journet E. P., Bligny R., Carde J. P., Douce R. Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Arch Biochem Biophys. 1982 Aug;217(1):312–323. doi: 10.1016/0003-9861(82)90507-0. [DOI] [PubMed] [Google Scholar]
  16. Ohnishi T., Ingledew W. J., Shiraishi S. Resolution and functional characterization of two mitochondrial iron-sulphur centres of the 'high-potential iron-sulphur protein' type. Biochem J. 1976 Jan 1;153(1):39–48. doi: 10.1042/bj1530039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohnishi T., Salerno J. C. Thermodynamic and EPR characteristics of two ferredoxin-type iron-sulfur centers in the succinate-ubiquinone reductase segment of the respiratory chain. J Biol Chem. 1976 Apr 10;251(7):2094–2104. [PubMed] [Google Scholar]
  18. Peisach J., Beinert H., Emptage M. H., Mims W. B., Fee J. A., Orme-Johnson W. H., Rendina A. R., Orme-Johnson N. R. Characterization of 3-iron ferredoxins by means of the linear electric field effect in EPR. J Biol Chem. 1983 Nov 10;258(21):13014–13016. [PubMed] [Google Scholar]
  19. Ramsay R. R., Singer T. P. Molecular forms of aconitase and their interconversions. Biochem J. 1984 Jul 15;221(2):489–497. doi: 10.1042/bj2210489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rich P. R., Bonner W. D., Jr EPR studies of higher plant mitochondria. II. Center S-3 of succinate dehydrogenase and its relation to alternative respiratory oxidations. Biochim Biophys Acta. 1978 Mar 13;501(3):381–395. doi: 10.1016/0005-2728(78)90106-8. [DOI] [PubMed] [Google Scholar]
  21. Rich P. R., Moore A. L., Ingledew W. J., Bonner W. D., Jr EPR studies of higher plant mitochondria. I Ubisemiquinone and its relation to alternative respiratory oxidations. Biochim Biophys Acta. 1977 Dec 23;462(3):501–514. doi: 10.1016/0005-2728(77)90097-4. [DOI] [PubMed] [Google Scholar]
  22. Rose I. A., O'Connell E. L. Mechanism of aconitase action. I. The hydrogen transfer reaction. J Biol Chem. 1967 Apr 25;242(8):1870–1879. [PubMed] [Google Scholar]
  23. Ruzicka F. J., Beinert H. A mitochondrial iron protein with properties of a high-potential iron-sulfur protein. Biochem Biophys Res Commun. 1974 Jun 4;58(3):556–563. doi: 10.1016/s0006-291x(74)80456-0. [DOI] [PubMed] [Google Scholar]
  24. Ruzicka F. J., Beinert H. The soluble "high potential" type iron-sulfur protein from mitochondria is aconitase. J Biol Chem. 1978 Apr 25;253(8):2514–2517. [PubMed] [Google Scholar]
  25. Schonbaum G. R., Bonner W. D., Jr, Storey B. T., Bahr J. T. Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol. 1971 Jan;47(1):124–128. doi: 10.1104/pp.47.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Villafranca J. J., Mildvan A. S. The mechanism of aconitase action. I. Preparation, physical properties of the enzyme, and activation by iron (II). J Biol Chem. 1971 Feb 10;246(3):772–779. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES