Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 Jun;81(2):711–713. doi: 10.1104/pp.81.2.711

Tissue Distribution and Subcellular Localization of Prephenate Aminotransferase in Leaves of Sorghum bicolor1

Daniel L Siehl 1, Bijay K Singh 1, Eric E Conn 1
PMCID: PMC1075409  PMID: 16664888

Abstract

The tissue and subcellular distribution of prephenate aminotransferase, an enzyme of the shikimate pathway, was investigated in protoplasts from leaves of Sorghum bicolor. Activity was detected in purified epidermal and mesophyll protoplasts, and in bundle sheath strands. After fractionation of mesophyll and epidermal protoplasts by differential centrifugation, 92% of the total prephenate aminotransferase activity was detected in the plastid fraction.

Full text

PDF
711

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner C. A., Jensen R. A. Novel features of prephenate aminotransferase from cell cultures of Nicotiana silvestris. Arch Biochem Biophys. 1985 Apr;238(1):237–246. doi: 10.1016/0003-9861(85)90161-4. [DOI] [PubMed] [Google Scholar]
  2. Fiedler E., Schultz G. Localization, purification, and characterization of shikimate oxidoreductase-dehydroquinate hydrolyase from stroma of spinach chloroplasts. Plant Physiol. 1985 Sep;79(1):212–218. doi: 10.1104/pp.79.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heber U., Pon N. G., Heber M. Localization of Carboxydismutase & Triosephosphate Dehydrogenases in Chloroplasts. Plant Physiol. 1963 May;38(3):355–360. doi: 10.1104/pp.38.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kojima M., Conn E. E. Tissue Distributions of Chlorogenic Acid and of Enzymes Involved in Its Metabolism in Leaves of Sorghum bicolor. Plant Physiol. 1982 Sep;70(3):922–925. doi: 10.1104/pp.70.3.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kojima M., Poulton J. E., Thayer S. S., Conn E. E. Tissue Distributions of Dhurrin and of Enzymes Involved in Its Metabolism in Leaves of Sorghum bicolor. Plant Physiol. 1979 Jun;63(6):1022–1028. doi: 10.1104/pp.63.6.1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Nikolau B. J., Wurtele E. S., Stumpf P. K. Tissue distribution of acetyl-coenzyme a carboxylase in leaves. Plant Physiol. 1984 Aug;75(4):895–901. doi: 10.1104/pp.75.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rubin J. L., Jensen R. A. Enzymology of l-Tyrosine Biosynthesis in Mung Bean (Vigna radiata [L.] Wilczek). Plant Physiol. 1979 Nov;64(5):727–734. doi: 10.1104/pp.64.5.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ting I. P. CO(2) Metabolism in Corn Roots. III. Inhibition of P-enolpyruvate Carboxylase by l-malate. Plant Physiol. 1968 Dec;43(12):1919–1924. doi: 10.1104/pp.43.12.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tuszynski G. P., Knight L., Piperno J. R., Walsh P. N. A rapid method for removal of [125I]iodide following iodination of protein solutions. Anal Biochem. 1980 Jul 15;106(1):118–122. doi: 10.1016/0003-2697(80)90126-8. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES