Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 Jul;81(3):762–767. doi: 10.1104/pp.81.3.762

Glyoxysomal Malate Synthase of Cucumber: Molecular Cloning of a cDNA and Regulation of Enzyme Synthesis during Germination 1

Steven M Smith 1, Christopher J Leaver 1
PMCID: PMC1075423  PMID: 16664899

Abstract

A cDNA clone for the glyoxysomal enzyme malate synthase was isolated from a cDNA library made with polyadenylated RNA from the cotyledons of germinating Cucumis sativus L. This cloned DNA sequence was used as a probe to characterize changes in the amounts of malate synthase gene transcripts in cotyledons of cucumber seeds grown both in the light and in the dark. Malate synthase gene transcripts increase in amount to a peak at day 3 or day 4, and thereafter decline. In the light, this rate of decline is significantly greater than in the dark. Measurement of the changes in the amounts of malate synthase by assaying enzyme activity directly, and by immunological reaction with a specific antiserum indicate that the developmentally regulated synthesis of malate synthase in germinating cucumber is brought about primarily by changes in the amount of malate synthase gene transcripts, rather than through a control of translation. Similarly, the effect of light on the amount of malate synthase correlates precisely with its effect on the abundance of malate synthase gene transcripts.

Full text

PDF
762

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker A., Leaver C. J. Isolation and sequence analysis of a cDNA encoding the ATP/ADP translocator of Zea mays L. Nucleic Acids Res. 1985 Aug 26;13(16):5857–5867. doi: 10.1093/nar/13.16.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker W. M., Leaver C. J., Weir E. M., Riezman H. Regulation of Glyoxysomal Enzymes during Germination of Cucumber: I. Developmental Changes in Cotyledonary Protein, RNA, and Enzyme Activities during Germination. Plant Physiol. 1978 Oct;62(4):542–549. doi: 10.1104/pp.62.4.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. D., Smith J. B. Nuclear dna amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1976 May 27;274(933):227–274. doi: 10.1098/rstb.1976.0044. [DOI] [PubMed] [Google Scholar]
  4. Cuming A. C., Bennett J. Biosynthesis of the light-harvesting chlorophyll a/b protein. Control of messenger RNA activity by light. Eur J Biochem. 1981 Aug;118(1):71–80. doi: 10.1111/j.1432-1033.1981.tb05487.x. [DOI] [PubMed] [Google Scholar]
  5. Kruse C., Kindl H. Malate synthase: aggregation, deaggregation, and binding of phospholipids. Arch Biochem Biophys. 1983 Jun;223(2):618–628. doi: 10.1016/0003-9861(83)90626-4. [DOI] [PubMed] [Google Scholar]
  6. Kruse C., Kindl H. Oligomerization of malate synthase during glyoxysome biosynthesis. Arch Biochem Biophys. 1983 Jun;223(2):629–638. doi: 10.1016/0003-9861(83)90627-6. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lord J. M., Roberts L. M. Formation of glyoxysomes. Int Rev Cytol Suppl. 1983;15:115–156. doi: 10.1016/b978-0-12-364376-6.50011-9. [DOI] [PubMed] [Google Scholar]
  9. Proudfoot N. The end of the message. Nature. 1982 Aug 5;298(5874):516–517. doi: 10.1038/298516a0. [DOI] [PubMed] [Google Scholar]
  10. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  11. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  12. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith S. M., Bedbrook J., Speirs J. Characterisation of three cDNA clones encoding different mRNAs for the precursor to the small subunit of wheat ribulosebisphosphate carboxylase. Nucleic Acids Res. 1983 Dec 20;11(24):8719–8734. doi: 10.1093/nar/11.24.8719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Walden R., Leaver C. J. Synthesis of Chloroplast Proteins during Germination and Early Development of Cucumber. Plant Physiol. 1981 Jun;67(6):1090–1096. doi: 10.1104/pp.67.6.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weir E. M., Riezman H., Grienenberger J. M., Becker W. M., Leaver C. J. Regulation of glyoxysomal enzymes during germination of cucumber. Temporal changes in translatable mRNAs for isocitrate lyase and malate synthase. Eur J Biochem. 1980 Dec;112(3):469–477. [PubMed] [Google Scholar]
  17. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES