Abstract
Oxygen sensitivity and partitioning of carbon was measured in a mutant line of Flaveria linearis that lacks most of the cytosolic fructose-1,6-bisphosphatase found in wild-type lines. Photosynthesis of leaves of the mutant line was nearly insensitive to O2, as found before. The mutant plants partitioned 2.5 times less carbon into sucrose than the wild type in a pulse chase experiment, with the extra carbon going mainly to starch but also to amino acids. From 10 to 50 min postlabeling, radioactivity chased out of the amino acid fraction to starch in both lines. In the middle of the light period, starch grains were larger in the mutant than in the wild type and covered 30% of the chloroplast area as seen with an electron microscope. Starch grains were found in both mesophyll and bundle sheath chloroplasts in both lines in these C3-C4 intermediate plants. At the end of the dark period, the starch levels were considerably reduced from what they were in the middle of the light in both lines. The concentration of sucrose was higher in the mutant line despite the lack of cytosolic fructose-1,6-bisphosphatase. The amino acid fraction accounted for about 30% of all label following a 10-min chase period. In the mutant line, most of the label was in the glycine + serine fraction, with 10% in the alanine fraction. In wild-type leaves, 35% of the label in amino acids was in alanine. These results indicate that this mutant survives the reduced cytosolic fructose-1,6-bisphosphatase activity by partitioning more carbon to starch and less to sucrose during the day and remobilizing the excess starch at night. However, these results raise two other questions about this mutant. First, why is the sucrose concentration high in a plant that partitions less carbon to sucrose, and second, why is alanine heavily labeled in the wild-type plants but not in the mutant plants?
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews T. J., Kane H. J. Pyruvate is a by-product of catalysis by ribulosebisphosphate carboxylase/oxygenase. J Biol Chem. 1991 May 25;266(15):9447–9452. [PubMed] [Google Scholar]
- Bouton J. H., Brown R. H., Byrd G. T., Sharkey T. D. Inheritance of the Reversal of O(2) Response of Photosynthesis in a Flaveria linearis Mutant. Plant Physiol. 1990 Jan;92(1):186–190. doi: 10.1104/pp.92.1.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. H., Bouton J. H., Evans P. T. Oxygen Stimulation of Apparent Photosynthesis in Flaveria linearis. Plant Physiol. 1986 May;81(1):212–215. doi: 10.1104/pp.81.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. H., Hattersley P. W. Leaf anatomy of c(3)-c(4) species as related to evolution of c(4) photosynthesis. Plant Physiol. 1989 Dec;91(4):1543–1550. doi: 10.1104/pp.91.4.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis J. M., Fellman J. K., Loescher W. H. Biosynthesis of Sucrose and Mannitol as a Function of Leaf Age in Celery (Apium graveolens L.). Plant Physiol. 1988 Jan;86(1):129–133. doi: 10.1104/pp.86.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huber J. L., Hite D. R., Outlaw W. H., Huber S. C. Inactivation of highly activated spinach leaf sucrose-phosphate synthase by dephosphorylation. Plant Physiol. 1991 Jan;95(1):291–297. doi: 10.1104/pp.95.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huber W. E., Brown R. H., Bouton J. H., Sternberg L. O. CO(2) Exchange, Cytogenetics, and Leaf Anatomy of Hybrids between Photosynthetically Distinct Flaveria Species. Plant Physiol. 1989 Mar;89(3):839–844. doi: 10.1104/pp.89.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ku M. S., Monson R. K., Littlejohn R. O., Nakamoto H., Fisher D. B., Edwards G. E. Photosynthetic Characteristics of C(3)-C(4) Intermediate Flaveria Species : I. Leaf Anatomy, Photosynthetic Responses to O(2) and CO(2), and Activities of Key Enzymes in the C(3) and C(4) Pathways. Plant Physiol. 1983 Apr;71(4):944–948. doi: 10.1104/pp.71.4.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodes D., Hogan A. L., Deal L., Jamieson G. C., Haworth P. Amino Acid Metabolism of Lemna minor L. : II. Responses to Chlorsulfuron. Plant Physiol. 1987 Jul;84(3):775–780. doi: 10.1104/pp.84.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rufty T. W., Huber S. C. Changes in Starch Formation and Activities of Sucrose Phosphate Synthase and Cytoplasmic Fructose-1,6-bisphosphatase in Response to Source-Sink Alterations. Plant Physiol. 1983 Jun;72(2):474–480. doi: 10.1104/pp.72.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rumpho M. E., Ku M. S., Cheng S. H., Edwards G. E. Photosynthetic Characteristics of C(3)-C(4) Intermediate Flaveria Species : III. Reduction of Photorespiration by a Limited C(4) Pathway of Photosynthesis in Flaveria ramosissima. Plant Physiol. 1984 Aug;75(4):993–996. doi: 10.1104/pp.75.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharkey T. D., Berry J. A., Raschke K. Starch and Sucrose Synthesis in Phaseolus vulgaris as Affected by Light, CO(2), and Abscisic Acid. Plant Physiol. 1985 Mar;77(3):617–620. doi: 10.1104/pp.77.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharkey T. D., Kobza J., Seemann J. R., Brown R. H. Reduced Cytosolic Fructose-1,6-Bisphosphatase Activity Leads to Loss of O(2) Sensitivity in a Flaveria linearis Mutant. Plant Physiol. 1988 Mar;86(3):667–671. doi: 10.1104/pp.86.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winter K., Usuda H., Tsuzuki M., Schmitt M., Edwards G. E., Thomas R. J., Evert R. F. Influence of Nitrate and Ammonia on Photosynthetic Characteristics and Leaf Anatomy of Moricandia arvensis. Plant Physiol. 1982 Aug;70(2):616–625. doi: 10.1104/pp.70.2.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
