Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Sep;100(1):409–415. doi: 10.1104/pp.100.1.409

Osmotin Gene Expression Is Posttranscriptionally Regulated 1

P Christopher LaRosa 1, Zutang Chen 1, Donald E Nelson 1, Narendra K Singh 1,2, Paul M Hasegawa 1, Ray A Bressan 1
PMCID: PMC1075566  PMID: 16652977

Abstract

Accumulation of both osmotin mRNA and osmotin protein in tissues of tobacco (Nicotiana tabacum L. var Wisconsin 38) is subject to complex developmental control. Osmotin was found to be most abundant in tobacco roots and in tissues of the outer stem comprised primarily of epidermis, and it was less abundant in the corolla. It was a minor protein in other tissues and was undetectable in some tissues, including those of developing and mature seeds. The mRNA abundances did not always reflect the amount of protein accumulation because in some tissues high levels of mRNA but not protein were measured and vice versa. Accumulation of osmotin mRNA but not protein occurred in some plant tissues due to treatment with abscisic acid, wounding, and tobacco mosaic virus infection. Ethylene induced the accumulation of osmotin mRNA and, to a small extent, protein in seedlings, but was ineffective with cultured cells. Exposure of cultured cells and plants to NaCl caused high levels of both mRNA and the protein to accumulate. Thus, the accumulation of osmotin mRNA is controlled developmentally and by at least five hormonal or environmental signals. However, posttranscriptional processes can limit osmotin accumulation.

Full text

PDF
409

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casas A. M., Nelson D. E., Raghothama K. G., D'Urzo M. P., Singh N. K., Bressan R. A., Hasegawa P. M. Expression of Osmotin-Like Genes in the Halophyte Atriplex nummularia L. Plant Physiol. 1992 May;99(1):329–337. doi: 10.1104/pp.99.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Edelbaum O., Ilan N., Grafi G., Sher N., Stram Y., Novick D., Tal N., Sela I., Rubinstein M. Two antiviral proteins from tobacco: purification and characterization by monoclonal antibodies to human beta-interferon. Proc Natl Acad Sci U S A. 1990 Jan;87(2):588–592. doi: 10.1073/pnas.87.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  4. Grosset J., Meyer Y., Chartier Y., Kauffmann S., Legrand M., Fritig B. Tobacco Mesophyll Protoplasts Synthesize 1,3-beta-Glucanase, Chitinases, and "Osmotins" during in Vitro Culture. Plant Physiol. 1990 Feb;92(2):520–527. doi: 10.1104/pp.92.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kononowicz A. K., Nelson D. E., Singh N. K., Hasegawa P. M., Bressan R. A. Regulation of the Osmotin Gene Promoter. Plant Cell. 1992 May;4(5):513–524. doi: 10.1105/tpc.4.5.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Larosa P. C., Hasegawa P. M., Rhodes D., Clithero J. M., Watad A. E., Bressan R. A. Abscisic Acid Stimulated Osmotic Adjustment and Its Involvement in Adaptation of Tobacco Cells to NaCl. Plant Physiol. 1987 Sep;85(1):174–181. doi: 10.1104/pp.85.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Larosa P. C., Singh N. K., Hasegawa P. M., Bressan R. A. Stable NaCl Tolerance of Tobacco Cells Is Associated with Enhanced Accumulation of Osmotin. Plant Physiol. 1989 Nov;91(3):855–861. doi: 10.1104/pp.91.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Linthorst H. J., Meuwissen R. L., Kauffmann S., Bol J. F. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell. 1989 Mar;1(3):285–291. doi: 10.1105/tpc.1.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Meeks-Wagner D. R., Dennis E. S., Tran Thanh Van K., Peacock W. J. Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell. 1989 Jan;1(1):25–35. doi: 10.1105/tpc.1.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Neale A. D., Wahleithner J. A., Lund M., Bonnett H. T., Kelly A., Meeks-Wagner D. R., Peacock W. J., Dennis E. S. Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell. 1990 Jul;2(7):673–684. doi: 10.1105/tpc.2.7.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nelson D. E., Raghothama K. G., Singh N. K., Hasegawa P. M., Bressan R. A. Analysis of structure and transcriptional activation of an osmotin gene. Plant Mol Biol. 1992 Jul;19(4):577–588. doi: 10.1007/BF00026784. [DOI] [PubMed] [Google Scholar]
  12. Singh N. K., Bracker C. A., Hasegawa P. M., Handa A. K., Buckel S., Hermodson M. A., Pfankoch E., Regnier F. E., Bressan R. A. Characterization of osmotin : a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol. 1987 Oct;85(2):529–536. doi: 10.1104/pp.85.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Singh N. K., Handa A. K., Hasegawa P. M., Bressan R. A. Proteins Associated with Adaptation of Cultured Tobacco Cells to NaCl. Plant Physiol. 1985 Sep;79(1):126–137. doi: 10.1104/pp.79.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Singh N. K., Larosa P. C., Handa A. K., Hasegawa P. M., Bressan R. A. Hormonal regulation of protein synthesis associated with salt tolerance in plant cells. Proc Natl Acad Sci U S A. 1987 Feb;84(3):739–743. doi: 10.1073/pnas.84.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Singh N. K., Nelson D. E., Kuhn D., Hasegawa P. M., Bressan R. A. Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential. Plant Physiol. 1989 Jul;90(3):1096–1101. doi: 10.1104/pp.90.3.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vigers A. J., Roberts W. K., Selitrennikoff C. P. A new family of plant antifungal proteins. Mol Plant Microbe Interact. 1991 Jul-Aug;4(4):315–323. doi: 10.1094/mpmi-4-315. [DOI] [PubMed] [Google Scholar]
  18. Woloshuk C. P., Meulenhoff J. S., Sela-Buurlage M., van den Elzen P. J., Cornelissen B. J. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell. 1991 Jun;3(6):619–628. doi: 10.1105/tpc.3.6.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yamaguchi-Shinozaki K., Mino M., Mundy J., Chua N. H. Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol. 1990 Dec;15(6):905–912. doi: 10.1007/BF00039429. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES