Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Sep;100(1):509–517. doi: 10.1104/pp.100.1.509

Auxin Biosynthesis during Seed Germination in Phaseolus vulgaris1

Krystyna Bialek 1,2, Lech Michalczuk 1,2,2, Jerry D Cohen 1,2
PMCID: PMC1075579  PMID: 16652991

Abstract

The relative roles of de novo biosynthesis of indoleacetic acid (IAA) and IAA conjugates stored in mature seeds (Phaseolus vulgaris L.) in supplying auxin to germinating bean seedlings were studied. Using 2H oxide and 2,4,5,6,7-[2H]l-tryptophan as tracers of IAA synthesis, we have shown that de novo biosynthesis of IAA, primarily from tryptophan, is an important source of auxin for young bean seedlings. New synthesis of IAA was detected as early as the second day of germination, at which time the seedlings began to accumulate fresh weight intensively and the total content of free IAA began to increase steadily. IAA conjugates that accumulate in large amounts in cotyledons of mature seeds may thus be considered to be only one of the possible sources of IAA required for the growth of bean seedlings.

Full text

PDF
509

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldi B. G., Maher B. R., Slovin J. P., Cohen J. D. Stable Isotope Labeling, in Vivo, of d- and l-Tryptophan Pools in Lemna gibba and the Low Incorporation of Label into Indole-3-Acetic Acid. Plant Physiol. 1991 Apr;95(4):1203–1208. doi: 10.1104/pp.95.4.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandurski R. S., Schulze A., Cohen J. D. Photo-regulation of the ratio of ester to free indole-3-acetic acid. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1219–1223. doi: 10.1016/0006-291x(77)91136-6. [DOI] [PubMed] [Google Scholar]
  3. Bandurski R. S., Schulze A. Concentration of Indole-3-acetic Acid and Its Derivatives in Plants. Plant Physiol. 1977 Aug;60(2):211–213. doi: 10.1104/pp.60.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bialek K., Cohen J. D. Isolation and Partial Characterization of the Major Amide-Linked Conjugate of Indole-3-Acetic Acid from Phaseolus vulgaris L. Plant Physiol. 1986 Jan;80(1):99–104. doi: 10.1104/pp.80.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bialek K., Cohen J. D. Quantitation of indoleacetic Acid conjugates in bean seeds by direct tissue hydrolysis. Plant Physiol. 1989 Jun;90(2):398–400. doi: 10.1104/pp.90.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bialek K., Cohen J. D. Quantitation of indoleacetic Acid conjugates in bean seeds by direct tissue hydrolysis. Plant Physiol. 1989 Jun;90(2):398–400. doi: 10.1104/pp.90.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bialek K., Meudt W. J., Cohen J. D. Indole-3-acetic Acid (IAA) and IAA Conjugates Applied to Bean Stem Sections: IAA Content and the Growth Response. Plant Physiol. 1983 Sep;73(1):130–134. doi: 10.1104/pp.73.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Black R. C., Hamilton R. H. Indoleacetic Acid biosynthesis in Avena coleoptile tips and excised bean shoots. Plant Physiol. 1971 Nov;48(5):603–606. doi: 10.1104/pp.48.5.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen J. D., Baldi B. G., Slovin J. P. C(6)-[benzene ring]-indole-3-acetic Acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic Acid in plants. Plant Physiol. 1986 Jan;80(1):14–19. doi: 10.1104/pp.80.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cohen J. D. Identification and Quantitative Analysis of Indole-3-Acetyl-l-Aspartate from Seeds of Glycine max L. Plant Physiol. 1982 Sep;70(3):749–753. doi: 10.1104/pp.70.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Epstein E., Baldi B. G., Cohen J. D. Identification of Indole-3-Acetylglutamate from Seeds of Glycine max L. Plant Physiol. 1986 Jan;80(1):256–258. doi: 10.1104/pp.80.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Epstein E., Cohen J. D., Bandurski R. S. Concentration and Metabolic Turnover of Indoles in Germinating Kernels of Zea mays L. Plant Physiol. 1980 Mar;65(3):415–421. doi: 10.1104/pp.65.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iino M., Carr D. J. Sources of Free IAA in the Mesocotyl of Etiolated Maize Seedlings. Plant Physiol. 1982 May;69(5):1109–1112. doi: 10.1104/pp.69.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mitra R., Burton J., Varner J. E. Deuterium oxide as a tool for the study of amino acid metabolism. Anal Biochem. 1976 Jan;70(1):1–17. doi: 10.1016/s0003-2697(76)80042-5. [DOI] [PubMed] [Google Scholar]
  15. Nowacki J., Bandurski R. S. Myo-Inositol Esters of Indole-3-acetic Acid as Seed Auxin Precursors of Zea mays L. Plant Physiol. 1980 Mar;65(3):422–427. doi: 10.1104/pp.65.3.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pengelly W. L., Bandurski R. S. Analysis of Indole-3-acetic Acid Metabolism in Zea mays Using Deuterium Oxide as a Tracer. Plant Physiol. 1983 Oct;73(2):445–449. doi: 10.1104/pp.73.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Whitehouse R. L., Zalik S. Translocation of Indole-3-acetic Acid-1'-C and Tryptophan-1-C in Seedlings of Phaseolus coccineus L. and Zea mays L. Plant Physiol. 1967 Oct;42(10):1363–1372. doi: 10.1104/pp.42.10.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wright A. D., Sampson M. B., Neuffer M. G., Michalczuk L., Slovin J. P., Cohen J. D. Indole-3-Acetic Acid Biosynthesis in the Mutant Maize orange pericarp, a Tryptophan Auxotroph. Science. 1991 Nov 15;254(5034):998–1000. doi: 10.1126/science.254.5034.998. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES