Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Oct;100(2):993–997. doi: 10.1104/pp.100.2.993

Effect of Cellulose Synthesis Inhibition on Growth and the Integration of Xyloglucan into Pea Internode Cell Walls 1

Hans G Edelmann 1,2,2, Stephen C Fry 1,2
PMCID: PMC1075655  PMID: 16653086

Abstract

2,6-Dichlorobenzonitrile (DCB, 100 μm) inhibited by 80 to 85% the incorporation of [3H]glucose into cellulose in stem segments of etiolated pea (Pisum sativum) seedlings. The inhibition lasted for at least 24 h. In the period 1 to 4 h after the excision of the segments, DCB did not influence elongation in the presence or absence of 2,4-dichlorophenoxyacetic acid (2,4-D). However, during the period 1 to 24 h after excision, DCB enhanced endogenous and 2,4-D-stimulated elongation by 65 and 34%, respectively. DCB did not affect the incorporation of 3H from [3H]arabinose into xyloglucan, and did not change the ability of the [3H]xyloglucan formed in vivo to bind strongly to the cell wall. Therefore, at least 80 to 85% of newly synthesized cellulose was excess to the requirements for tight wall binding of newly synthesized xyloglucan. This conflicts with the hypothesis that xyloglucan is held in the cell wall solely by direct hydrogen bonding to the surfaces of cellulosic microfibrils.

Full text

PDF
993

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aspinall G. O., Molloy J. A., Craig J. W. Extracellular polysaccharides from suspension-cultured sycamore cells. Can J Biochem. 1969 Nov;47(11):1063–1070. doi: 10.1139/o69-170. [DOI] [PubMed] [Google Scholar]
  2. Bauer W. D., Talmadge K. W., Keegstra K., Albersheim P. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells. Plant Physiol. 1973 Jan;51(1):174–187. doi: 10.1104/pp.51.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheung S. P., Cleland R. E. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms. Plant Cell Physiol. 1991;32(7):1015–1019. doi: 10.1093/oxfordjournals.pcp.a078164. [DOI] [PubMed] [Google Scholar]
  4. Dayanandan P., Kaufman P. B. Analysis and significance of gravity-induced asymmetric growth in the grass leaf-sheath pulvinus. Ann Bot. 1984;53:29–44. doi: 10.1093/oxfordjournals.aob.a086668. [DOI] [PubMed] [Google Scholar]
  5. Fry S. C. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochem J. 1982 May 1;203(2):493–504. doi: 10.1042/bj2030493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fry S. C., Smith R. C., Renwick K. F., Martin D. J., Hodge S. K., Matthews K. J. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J. 1992 Mar 15;282(Pt 3):821–828. doi: 10.1042/bj2820821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayashi T., Maclachlan G. Pea xyloglucan and cellulose : I. Macromolecular organization. Plant Physiol. 1984 Jul;75(3):596–604. doi: 10.1104/pp.75.3.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayashi T., Marsden M. P., Delmer D. P. Pea Xyloglucan and Cellulose: VI. Xyloglucan-Cellulose Interactions in Vitro and in Vivo. Plant Physiol. 1987 Feb;83(2):384–389. doi: 10.1104/pp.83.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hayashi T., Wong Y. S., Maclachlan G. Pea Xyloglucan and Cellulose : II. Hydrolysis by Pea Endo-1,4-beta-Glucanases. Plant Physiol. 1984 Jul;75(3):605–610. doi: 10.1104/pp.75.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Labavitch J. M., Ray P. M. Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol. 1974 May;53(5):669–673. doi: 10.1104/pp.53.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moore P. J., Darvill A. G., Albersheim P., Staehelin L. A. Immunogold localization of xyloglucan and rhamnogalacturonan I in the cell walls of suspension-cultured sycamore cells. Plant Physiol. 1986 Nov;82(3):787–794. doi: 10.1104/pp.82.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shedletzky E., Shmuel M., Delmer D. P., Lamport D. T. Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network. Plant Physiol. 1990 Nov;94(3):980–987. doi: 10.1104/pp.94.3.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith R. C., Fry S. C. Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J. 1991 Oct 15;279(Pt 2):529–535. doi: 10.1042/bj2790529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  15. Valent B. S., Albersheim P. The structure of plant cell walls: v. On the binding of xyloglucan to cellulose fibers. Plant Physiol. 1974 Jul;54(1):105–108. doi: 10.1104/pp.54.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES