Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Nov;100(3):1092–1102. doi: 10.1104/pp.100.3.1092

Flow Cytometry of Spinach Chloroplasts 1

Determination of Intactness and Lectin-Binding Properties of the Envelope and the Thylakoid Membranes

Wolfgang P Schröder 1,2,2, Patrice X Petit 1,2
PMCID: PMC1075751  PMID: 16653090

Abstract

Intact spinach (Spinacia oleracea) chloroplasts, thylakoid membranes, and inside-out or right-side-out thylakoid vesicles have been characterized by flow cytometry with respect to forward angle light scatter, right angle light scatter, and chlorophyll fluorescence. Analysis of intact chloroplasts with respect to forward light scatter and the chlorophyll fluorescence parameter revealed the presence of truly “intact” and “disrupted” chloroplasts. The forward light scatter parameter, normally considered to reflect object size, was instead found to reflect the particle density. One essential advantage of flow cytometry is that additional parameters such as Ricinus communis agglutinin (linked to fluorescein isothiocyanate) fluorescence can be determined through logical conditions placed on bit-maps, amounting to an analytical purification procedure. In the present case, chloroplast subpopulations with fully preserved envelopes, thylakoid membrane, and inside-out or right-side-out thylakoid membranes vesicles can be distinguished. Flow cytometry is also a useful tool to address the question of availability of glycosyl moities on the membrane surfaces if one keeps in mind that organelle-to-organelle interactions could be partially mediated through a recognition process. A high specific binding of R. communis agglutinin and peanut lectin to the chloroplast envelope was detected. This showed that galactose residues were exposed and accessible to specific lectins on the chloroplast surface. No exposed glucose, fucose, or mannose residues could be detected by the appropriate lectins. Ricin binding to the intact chloroplasts caused a strong aggregation. Disruption of these aggregates by resuspension or during passage in the flow cytometer induced partial breakage of the chloroplasts. Only minor binding of R. communis agglutinin and peanut lectin to the purified thylakoid membranes was detected; the binding was found to be low for both inside-out and right-side-out vesicles of the thylakoid membranes.

Full text

PDF
1092

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertsson P. A., Svensson P. Counter-current distribution of sonicated inside-out thylakoid vesicles. Mol Cell Biochem. 1988 Jun;81(2):155–163. doi: 10.1007/BF00219318. [DOI] [PubMed] [Google Scholar]
  2. Billecocq A. Structure des membranes biologiques: localisation des galactosyldiglycérides dans les chloroplastes au moyen des anticorps spécifiques. II. Etude en microscopie électronique à l'aide d'un marquage à la peroxydase. Biochim Biophys Acta. 1974 Jun 13;352(2):245–251. doi: 10.1016/0005-2736(74)90215-6. [DOI] [PubMed] [Google Scholar]
  3. Cameron M. J. Macintosh graphics for the EPICS flow cytometer user. Cytometry. 1990;11(8):916–918. doi: 10.1002/cyto.990110811. [DOI] [PubMed] [Google Scholar]
  4. Curatolo W. Glycolipid function. Biochim Biophys Acta. 1987 Jun 24;906(2):137–160. doi: 10.1016/0304-4157(87)90009-8. [DOI] [PubMed] [Google Scholar]
  5. Gantet P., Hubac C., Brown S. C. Flow Cytometric Fluorescence Anisotropy of Lipophilic Probes in Epidermal and Mesophyll Protoplasts from Water-Stressed Lupinus albus L. Plant Physiol. 1990 Oct;94(2):729–737. doi: 10.1104/pp.94.2.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoekstra D., Düzgüneş N. Lectin-carbohydrate interactions in model and biological membrane systems. Subcell Biochem. 1989;14:229–278. doi: 10.1007/978-1-4613-9362-7_6. [DOI] [PubMed] [Google Scholar]
  7. Mellor R. B., Krusius T., Lord J. M. Analysis of glycoconjugate saccharides in organelles isolated from castor bean endosperm. Plant Physiol. 1980 Jun;65(6):1073–1075. doi: 10.1104/pp.65.6.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mourioux G., Douce R. Slow Passive Diffusion of Orthophosphate between Intact Isolated Chloroplasts and Suspending Medium. Plant Physiol. 1981 Mar;67(3):470–473. doi: 10.1104/pp.67.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nakatani H. Y., Barber J. An improved method for isolating chloroplasts retaining their outer membranes. Biochim Biophys Acta. 1977 Sep 14;461(3):500–512. [PubMed] [Google Scholar]
  10. Nalin C. M., Cross R. L., Lucas J. J., Kohlbrenner W. E. Lack of evidence for covalently-bound carbohydrates in energy-transducing ATPases from mitochondria, bacteria, and chloroplasts. FEBS Lett. 1979 Aug 15;104(2):209–214. doi: 10.1016/0014-5793(79)80816-9. [DOI] [PubMed] [Google Scholar]
  11. Paau A. S., Cowles J. R., Oro J., Bartel A., Hungerford E. Separation of algal mixtures and bacterial mixtures with flow-microfluorometer using chlorophyll and ethidium bromide fluorescence. Arch Microbiol. 1979 Mar 12;120(3):271–273. doi: 10.1007/BF00423075. [DOI] [PubMed] [Google Scholar]
  12. Paulson J. C. Glycoproteins: what are the sugar chains for? Trends Biochem Sci. 1989 Jul;14(7):272–276. doi: 10.1016/0968-0004(89)90062-5. [DOI] [PubMed] [Google Scholar]
  13. Petit P. X. Flow Cytometric Analysis of Rhodamine 123 Fluorescence during Modulation of the Membrane Potential in Plant Mitochondria. Plant Physiol. 1992 Jan;98(1):279–286. doi: 10.1104/pp.98.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Petit P. X., O'Connor J. E., Grunwald D., Brown S. C. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem. 1990 Dec 12;194(2):389–397. doi: 10.1111/j.1432-1033.1990.tb15632.x. [DOI] [PubMed] [Google Scholar]
  15. Xu C., Auger J., Govindjee Chlorophyll a fluorescence measurements of isolated spinach thylakoids obtained by using single-laser-based flow cytometry. Cytometry. 1990;11(3):349–358. doi: 10.1002/cyto.990110306. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES