Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Nov;100(3):1406–1410. doi: 10.1104/pp.100.3.1406

Production and Characterization of Monoclonal Antibodies against NADPH-Cytochrome P-450 Reductases from Helianthus tuberosus1

Agnès Lesot 1,2, Irène Benveniste 1,2, Marie-Paule Hasenfratz 1,2, Francis Durst 1,2
PMCID: PMC1075799  PMID: 16653138

Abstract

Monoclonal antibodies (mAbs) against a plant NADPH-cytochrome P-450 (Cyt P-450) reductase from Jerusalem artichoke (Helianthus tuberosus) tuber were prepared. These antibodies were produced by hybridoma resulting from the fusion of spleen cells from a rat immunized with a purified preparation of the reductase and mouse myeloma cells. The mAbs thus obtained were screened for their interaction with the reductases, first in western dots and then in blots, and for their ability to inhibit the NADPH-cytochrome c (Cyt c) reductase activity from Jerusalem artichoke microsomes. Among the 11 clones giving a positive response on western blots, only 6 were also able to inhibit microsomal NADPH-Cyt c reductase activity, and the microsomal Cyt P-450 monooxygenase activities dependent upon electrons transferred by the reductase. Thus, two families of mAbs were characterized: a family of mAbs that interact with epitopes of the reductase implicated in the reduction of Cyt P-450 by NADPH (binding sites for NADPH, flavin mononucleotide, flavin adenine dinucleotide, and Cyt P-450), and a structural family, whose members recognize epitopes outside the active site of the reductases. These mAbs specifically recognize the reductase, and all of them interact with all of the isoforms, indicating that important primary or secondary structural analogies exist between the isoforms, not only at the active site, but also at the level of epitopes not directly associated with catalytic activity.

Full text

PDF
1406

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benveniste I., Gabriac B., Durst F. Purification and characterization of the NADPH-cytochrome P-450 (cytochrome c) reductase from higher-plant microsomal fraction. Biochem J. 1986 Apr 15;235(2):365–373. doi: 10.1042/bj2350365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benveniste I., Lesot A., Hasenfratz M. P., Durst F. Immunochemical characterization of NADPH-cytochrome P-450 reductase from Jerusalem artichoke and other higher plants. Biochem J. 1989 May 1;259(3):847–853. doi: 10.1042/bj2590847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benveniste I., Lesot A., Hasenfratz M. P., Kochs G., Durst F. Multiple forms of NADPH-cytochrome P450 reductase in higher plants. Biochem Biophys Res Commun. 1991 May 31;177(1):105–112. doi: 10.1016/0006-291x(91)91954-b. [DOI] [PubMed] [Google Scholar]
  4. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  5. De Blas A. L., Cherwinski H. M. Detection of antigens on nitrocellulose paper immunoblots with monoclonal antibodies. Anal Biochem. 1983 Aug;133(1):214–219. doi: 10.1016/0003-2697(83)90245-2. [DOI] [PubMed] [Google Scholar]
  6. Donaldson R. P., Luster D. G. Multiple forms of plant cytochromes p-450. Plant Physiol. 1991 Jul;96(3):669–674. doi: 10.1104/pp.96.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galfrè G., Milstein C. Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol. 1981;73(Pt B):3–46. doi: 10.1016/0076-6879(81)73054-4. [DOI] [PubMed] [Google Scholar]
  8. Hagmann M. L., Heller W., Grisebach H. Induction and characterization of a microsomal flavonoid 3'-hydroxylase from parsley cell cultures. Eur J Biochem. 1983 Aug 15;134(3):547–554. doi: 10.1111/j.1432-1033.1983.tb07601.x. [DOI] [PubMed] [Google Scholar]
  9. Hasson E. P., West C. A. Properties of the System for the Mixed Function Oxidation of Kaurene and Kaurene Derivatives in Microsomes of the Immature Seed of Marah macrocarpus: Electron Transfer Components. Plant Physiol. 1976 Oct;58(4):479–484. doi: 10.1104/pp.58.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kochs G., Grisebach H. Phytoalexin synthesis in soybean: purification and reconstitution of cytochrome P450 3,9-dihydroxypterocarpan 6a-hydroxylase and separation from cytochrome P450 cinnamate 4-hydroxylase. Arch Biochem Biophys. 1989 Sep;273(2):543–553. doi: 10.1016/0003-9861(89)90514-6. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Park S. S., Waxman D. J., Miller H., Robinson R., Attisano C., Guengerich F. P., Gelboin H. V. Preparation and characterization of monoclonal antibodies to pregnenolone 16-alpha-carbonitrile inducible rat liver cytochrome P-450. Biochem Pharmacol. 1986 Sep 1;35(17):2859–2867. doi: 10.1016/0006-2952(86)90477-6. [DOI] [PubMed] [Google Scholar]
  14. Pinot F., Salaün J. P., Bosch H., Lesot A., Mioskowski C., Durst F. omega-Hydroxylation of Z9-octadecenoic, Z9,10-epoxystearic and 9,10-dihydroxystearic acids by microsomal cytochrome P450 systems from Vicia sativa. Biochem Biophys Res Commun. 1992 Apr 15;184(1):183–193. doi: 10.1016/0006-291x(92)91176-q. [DOI] [PubMed] [Google Scholar]
  15. Porter T. D., Beck T. W., Kasper C. B. NADPH-cytochrome P-450 oxidoreductase gene organization correlates with structural domains of the protein. Biochemistry. 1990 Oct 23;29(42):9814–9818. doi: 10.1021/bi00494a009. [DOI] [PubMed] [Google Scholar]
  16. Porter T. D., Coon M. J. Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem. 1991 Jul 25;266(21):13469–13472. [PubMed] [Google Scholar]
  17. Reik L. M., Maines S. L., Ryan D. E., Levin W., Bandiera S., Thomas P. E. A simple, non-chromatographic purification procedure for monoclonal antibodies. Isolation of monoclonal antibodies against cytochrome P450 isozymes. J Immunol Methods. 1987 Jun 26;100(1-2):123–130. doi: 10.1016/0022-1759(87)90180-3. [DOI] [PubMed] [Google Scholar]
  18. Rossmann M. G., Moras D., Olsen K. W. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974 Jul 19;250(463):194–199. doi: 10.1038/250194a0. [DOI] [PubMed] [Google Scholar]
  19. Stott D. I. Immunoblotting and dot blotting. J Immunol Methods. 1989 May 12;119(2):153–187. doi: 10.1016/0022-1759(89)90394-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Werck-Reichhart D., Gabriac B., Teutsch H., Durst F. Two cytochrome P-450 isoforms catalysing O-de-ethylation of ethoxycoumarin and ethoxyresorufin in higher plants. Biochem J. 1990 Sep 15;270(3):729–735. doi: 10.1042/bj2700729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zidan G., Ruch J. V. Production of monoclonal antibodies against mouse molar papilla cells. Int J Dev Biol. 1989 Jun;33(2):245–259. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES