Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Nov;100(3):1433–1441. doi: 10.1104/pp.100.3.1433

Turnover of Soluble Proteins in the Wheat Sieve Tube

Donald B Fisher 1, Yujia Wu 1,1, Maurice S B Ku 1
PMCID: PMC1075803  PMID: 16653142

Abstract

Although the enucleate conducting cells of the phloem are incapable of protein synthesis, phloem exudates characteristically contain low concentrations of soluble proteins. The role of these proteins and their movement into and out of the sieve tubes poses important questions for phloem physiology and for cell-to-cell protein movement via plasmodesmata. The occurrence of protein turnover in sieve tubes was investigated by [35S]methionine labeling and by the use of aphid stylets to sample the sieve tube contents at three points along a source-to-sink pathway (flag leaf to grains) in wheat plants (Triticum aestivum L.). Protein concentration and composition were similar at all sampling sites. The kinetics of 35S-labeling of protein suggested a basically source-to-sink pattern of movement for many proteins. However, an appreciable amount of protein synthesis and, presumably, removal also occurred along the path. This movement appeared to be protein specific and not based on passive molecular sieving. The results have important implications for the transport capacities of plasmodesmata between sieve tubes and companion cells. The observations considerably expand the possible basis for ongoing sieve tube-companion cell interactions and, perhaps, interaction between sources and sinks.

Full text

PDF
1433

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Christy A. L., Fisher D. B. Kinetics of C-photosynthate translocation in morning glory vines. Plant Physiol. 1978 Feb;61(2):283–290. doi: 10.1104/pp.61.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fife J. M., Price C., Fife D. C. Some properties of phloem exudate collected from root of sugar beet. Plant Physiol. 1962 Nov;37(6):791–792. doi: 10.1104/pp.37.6.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fisher D. B., Gifford R. M. Accumulation and Conversion of Sugars by Developing Wheat Grains : VI. Gradients Along the Transport Pathway from the Peduncle to the Endosperm Cavity during Grain Filling. Plant Physiol. 1986 Dec;82(4):1024–1030. doi: 10.1104/pp.82.4.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fisher D. B., Gifford R. M. Accumulation and Conversion of Sugars by Developing Wheat Grains : VII. Effect of Changes in Sieve Tube and Endosperm Cavity Sap Concentrations on the Grain Filling Rate. Plant Physiol. 1987 Jun;84(2):341–347. doi: 10.1104/pp.84.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fisher D. B. In situ measurement of plant water potentials by equilibration with microdroplets of polyethylene glycol 8000. Plant Physiol. 1985 Sep;79(1):270–273. doi: 10.1104/pp.79.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fisher D. B. Measurement of Phloem transport rates by an indicator-dilution technique. Plant Physiol. 1990 Oct;94(2):455–462. doi: 10.1104/pp.94.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Miller M., Park M. K., Hanover J. A. Nuclear pore complex: structure, function, and regulation. Physiol Rev. 1991 Jul;71(3):909–949. doi: 10.1152/physrev.1991.71.3.909. [DOI] [PubMed] [Google Scholar]
  8. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  9. Rabilloud T., Carpentier G., Tarroux P. Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis. 1988 Jun;9(6):288–291. doi: 10.1002/elps.1150090608. [DOI] [PubMed] [Google Scholar]
  10. VON ARX, NEHER R. EINE MULTIDIMENSIONALE TECHNIK ZUR CHROMATOGRAPHISCHEN IDENTIFIZIERUNG VON AMINOSAEUREN. J Chromatogr. 1963 Nov;12:329–341. doi: 10.1016/s0021-9673(01)83693-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES