Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Nov;100(3):1503–1507. doi: 10.1104/pp.100.3.1503

Expression of a Maize Ubiquitin Gene Promoter-bar Chimeric Gene in Transgenic Rice Plants 1

Seiichi Toki 1,2,3,4,5, Susumu Takamatsu 1,2,3,4,5, Chyuhei Nojiri 1,2,3,4,5, Shinya Ooba 1,2,3,4,5, Hiroyuki Anzai 1,2,3,4,5, Michiaki Iwata 1,2,3,4,5, Alan H Christensen 1,2,3,4,5,2, Peter H Quail 1,2,3,4,5, Hirofumi Uchimiya 1,2,3,4,5
PMCID: PMC1075812  PMID: 16653150

Abstract

We have constructed a chimeric gene consisting of the promoter, first exon, and first intron of a maize ubiquitin gene (Ubi-1) and the coding sequence of the bar gene from Streptomyces hygroscopicus. This construct was transferred into rice (Oryza sativa L.) protoplasts via electroporation, and 10 plants were regenerated from calli that had been selected for resistance to exogenously supplied bialaphos. Transgenic plants grown in a greenhouse were resistant to both bialaphos and phosphinothricine at a dosage lethal to untransformed control plants. Evidence of stable integration of the transferred gene into the genome of the regenerated primary transformant plants was obtained from Southern blot analysis. In addition, northern blot analysis indicated expression and proper splicing of the maize ubiquitin gene first intron from the primary chimeric transcript in these transgenic rice plants, and western blot analysis and enzymic assays verified expression of the active bar gene product. Apparent mendelian segregation for bialaphos resistance in T1 progeny of primary transformants was confirmed.

Full text

PDF
1503

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battraw M. J., Hall T. C. Histochemical analysis of CaMV 35S promoter-beta-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol. 1990 Oct;15(4):527–538. doi: 10.1007/BF00017828. [DOI] [PubMed] [Google Scholar]
  2. Bevan M., Barnes W. M., Chilton M. D. Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res. 1983 Jan 25;11(2):369–385. doi: 10.1093/nar/11.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Block M. D., Botterman J., Vandewiele M., Dockx J., Thoen C., Gosselé V., Movva N. R., Thompson C., Montagu M. V., Leemans J. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 1987 Sep;6(9):2513–2518. doi: 10.1002/j.1460-2075.1987.tb02537.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christensen A. H., Sharrock R. A., Quail P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992 Feb;18(4):675–689. doi: 10.1007/BF00020010. [DOI] [PubMed] [Google Scholar]
  5. De Block M., De Brouwer D., Tenning P. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants. Plant Physiol. 1989 Oct;91(2):694–701. doi: 10.1104/pp.91.2.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dekeyser R., Claes B., Marichal M., Van Montagu M., Caplan A. Evaluation of selectable markers for rice transformation. Plant Physiol. 1989 May;90(1):217–223. doi: 10.1104/pp.90.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fromm M. E., Morrish F., Armstrong C., Williams R., Thomas J., Klein T. M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology (N Y) 1990 Sep;8(9):833–839. doi: 10.1038/nbt0990-833. [DOI] [PubMed] [Google Scholar]
  8. Gordon-Kamm W. J., Spencer T. M., Mangano M. L., Adams T. R., Daines R. J., Start W. G., O'Brien J. V., Chambers S. A., Adams W. R., Jr, Willetts N. G. Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants. Plant Cell. 1990 Jul;2(7):603–618. doi: 10.1105/tpc.2.7.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hashida S., Imagawa M., Inoue S., Ruan K. H., Ishikawa E. More useful maleimide compounds for the conjugation of Fab' to horseradish peroxidase through thiol groups in the hinge. J Appl Biochem. 1984 Feb-Apr;6(1-2):56–63. [PubMed] [Google Scholar]
  10. Hayashimoto A., Li Z., Murai N. A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol. 1990 Jul;93(3):857–863. doi: 10.1104/pp.93.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shure M., Wessler S., Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983 Nov;35(1):225–233. doi: 10.1016/0092-8674(83)90225-8. [DOI] [PubMed] [Google Scholar]
  12. Tada Y., Sakamoto M., Matsuoka M., Fujimura T. Expression of a monocot LHCP promoter in transgenic rice. EMBO J. 1991 Jul;10(7):1803–1808. doi: 10.1002/j.1460-2075.1991.tb07705.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Thompson C. J., Movva N. R., Tizard R., Crameri R., Davies J. E., Lauwereys M., Botterman J. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 1987 Sep;6(9):2519–2523. doi: 10.1002/j.1460-2075.1987.tb02538.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES