Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Nov;100(3):1562–1566. doi: 10.1104/pp.100.3.1562

Fast Fluorescence Quenching from Isolated Guard Cell Chloroplasts of Vicia faba Is Induced by Blue Light and Not by Red Light 1

Alaka Srivastava 1,2, Eduardo Zeiger 1,2
PMCID: PMC1075820  PMID: 16653158

Abstract

Chlorophyll a fluorescence transients from isolated Vicia faba guard cell chloroplasts were used to probe the response of these organelles to light quality. Guard cell chloroplasts were isolated from protoplasts by passing them through a 10-μm nylon net. Intact chloroplasts were purified on a Percoll gradient. Chlorophyll a fluorescence transients induced by actinic red or blue light were measured with a fluorometer equipped with a measuring beam. Actinic red light induced a monophasic quenching, and transients induced by blue light showed biphasic kinetics having a slow and a fast component. The difference between the red and blue light-induced transients could be observed over a range of fluence rates tested (200-800 μmol m−2 s−1). The threshold fluence rate of blue light for the induction of the fast component of quenching was 200 μmol m−2 s−1, but in the presence of saturating red light, fluence rates as low as 25 μmol m−2 s−1 induced the fast quenching. These results indicate that guard cell chloroplasts have a specific response to blue light.

Full text

PDF
1562

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gotow K., Taylor S., Zeiger E. Photosynthetic Carbon Fixation in Guard Cell Protoplasts of Vicia faba L. : Evidence from Radiolabel Experiments. Plant Physiol. 1988 Mar;86(3):700–705. doi: 10.1104/pp.86.3.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hsiao T. C., Allaway W. G. Action Spectra for Guard Cell Rb Uptake and Stomatal Opening in Vivia faba. Plant Physiol. 1973 Jan;51(1):82–88. doi: 10.1104/pp.51.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Iino M., Ogawa T., Zeiger E. Kinetic properties of the blue-light response of stomata. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8019–8023. doi: 10.1073/pnas.82.23.8019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kruse T., Tallman G., Zeiger E. Isolation of Guard Cell Protoplasts from Mechanically Prepared Epidermis of Vicia faba Leaves. Plant Physiol. 1989 Aug;90(4):1382–1386. doi: 10.1104/pp.90.4.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mawson B. T., Zeiger E. Blue light-modulation of chlorophyll a fluorescence transients in guard cell chloroplasts. Plant Physiol. 1991 Jul;96(3):753–760. doi: 10.1104/pp.96.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Poffenroth M., Green D. B., Tallman G. Sugar Concentrations in Guard Cells of Vicia faba Illuminated with Red or Blue Light : Analysis by High Performance Liquid Chromatography. Plant Physiol. 1992 Apr;98(4):1460–1471. doi: 10.1104/pp.98.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Reckmann U., Scheibe R., Raschke K. Rubisco activity in guard cells compared with the solute requirement for stomatal opening. Plant Physiol. 1990 Jan;92(1):246–253. doi: 10.1104/pp.92.1.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Serrano E. E., Zeiger E., Hagiwara S. Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. Proc Natl Acad Sci U S A. 1988 Jan;85(2):436–440. doi: 10.1073/pnas.85.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sharkey T. D., Raschke K. Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L. Plant Physiol. 1981 Nov;68(5):1170–1174. doi: 10.1104/pp.68.5.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shimazaki K., Terada J., Tanaka K., Kondo N. Calvin-Benson Cycle Enzymes in Guard-Cell Protoplasts from Vicia faba L: Implications for the Greater Utilization of Phosphoglycerate/Dihydroxyacetone Phosphate Shuttle between Chloroplasts and the Cytosol. Plant Physiol. 1989 Jul;90(3):1057–1064. doi: 10.1104/pp.90.3.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Spudich J. L., Bogomolni R. A. Sensory rhodopsins of halobacteria. Annu Rev Biophys Biophys Chem. 1988;17:193–215. doi: 10.1146/annurev.bb.17.060188.001205. [DOI] [PubMed] [Google Scholar]
  13. Tallman G., Zeiger E. Light quality and osmoregulation in vicia guard cells : evidence for involvement of three metabolic pathways. Plant Physiol. 1988 Nov;88(3):887–895. doi: 10.1104/pp.88.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES