Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Dec;100(4):1656–1660. doi: 10.1104/pp.100.4.1656

Delay of Membrane Lipid Degradation by Calcium Treatment during Cabbage Leaf Senescence 1

Foued Chéour 1,2,2, Joseph Arul 1,2, Joseph Makhlouf 1,2, Claude Willemot 1,2
PMCID: PMC1075848  PMID: 16653181

Abstract

Cabbage leaf discs (Brassica oleracea L., Capitata group) were floated adaxial side up in 0, 0.05, or 0.25 m CaCl2 solutions at 15°C for 14 d in the dark. To assess whether the delay of senescence by calcium treatment involved protection of membrane lipids, chlorophyll and protein content and the lipid composition of the membranes were determined during incubation. Chlorophyll and protein content decreased with time, in correlation with a reduction in the amount of phospholipids. The degree of unsaturation of phospholipids and free fatty acids decreased, whereas the ratio of sterol to phospholipid increased. The proportions of phospholipid classes did not change during senescence. The catabolism of phospholipids was delayed by 0.05 m calcium, but accelerated by 0.25 m, as compared to the untreated control. Based on the levels of the lipid intermediates, phospholipase D, phosphatidic acid phosphatase, lipolytic acyl hydrolase, and lipoxygenase appeared to be involved in the breakdown of phospholipids during senescence. Phospholipase D and phosphatidic acid phosphatase may be directly influenced by calcium. The calcium treatment apparently did not affect the activity of acyl hydrolase. Lipoxygenase, responsible for the peroxidation of the polyunsaturated fatty acids, was probably indirectly influenced by calcium. We conclude that the delay of senescence of cabbage leaf discs by calcium treatment involved protection of membrane lipids from degradation.

Full text

PDF
1656

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Brown J. H., Chambers J. A., Thompson J. E. Acyl chain and head group regulation of phospholipid catabolism in senescing carnation flowers. Plant Physiol. 1991 Mar;95(3):909–916. doi: 10.1104/pp.95.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fobel M., Lynch D. V., Thompson J. E. Membrane deterioration in senescing carnation flowers : coordinated effects of phospholipid degradation and the action of membranous lipoxygenase. Plant Physiol. 1987 Sep;85(1):204–211. doi: 10.1104/pp.85.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Paliyath G., Thompson J. E. Calcium- and calmodulin-regulated breakdown of phospholipid by microsomal membranes from bean cotyledons. Plant Physiol. 1987 Jan;83(1):63–68. doi: 10.1104/pp.83.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pauls K. P., Thompson J. E. Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons. Plant Physiol. 1984 Aug;75(4):1152–1157. doi: 10.1104/pp.75.4.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Poovaiah B. W., Leopold A. C. Deferral of leaf senescence with calcium. Plant Physiol. 1973 Sep;52(3):236–239. doi: 10.1104/pp.52.3.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Thompson J. E., Mayak S., Shinitzky M., Halevy A. H. Acceleration of membrane senescence in cut carnation flowers by treatment with ethylene. Plant Physiol. 1982 Apr;69(4):859–863. doi: 10.1104/pp.69.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yao K., Paliyath G., Thompson J. E. Nonsedimentable microvesicles from senescing bean cotyledons contain gel phase-forming phospholipid degradation products. Plant Physiol. 1991 Oct;97(2):502–508. doi: 10.1104/pp.97.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES