Abstract
Uninucleate microspores in anther cultures of bread wheat (Triticum aestivum cv Pavon) are capable of producing haploid pollen embryoids and plants. To gain an understanding of this alternate pathway of pollen development, we constructed a cDNA library to young pollen embryoids, isolated embryoid-specific genes, and analyzed their expression patterns during morphogenesis. Two embryoid-abundant clones, pEMB4 and 94, were expressed very early during culture, suggesting that these genes are associated with development and are not simply expressed as a consequence of differentiation. The accumulation patterns of five cloned mRNAs may indicate the activation of specific genes associated with the major morphological and physiological activities connected with the differentiation of embryoids in vitro. These results suggest that embryoid-abundant gene expression is causally related to this pathway because gene expression is spatially and temporally specific and is not observed when microspores are cultured under noninductive conditions.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albani D., Robert L. S., Donaldson P. A., Altosaar I., Arnison P. G., Fabijanski S. F. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant Mol Biol. 1990 Oct;15(4):605–622. doi: 10.1007/BF00017835. [DOI] [PubMed] [Google Scholar]
- Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bedinger P. A., Edgerton M. D. Developmental staging of maize microspores reveals a transition in developing microspore proteins. Plant Physiol. 1990 Feb;92(2):474–479. doi: 10.1104/pp.92.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S. M., Crouch M. L. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase. Plant Cell. 1990 Mar;2(3):263–274. doi: 10.1105/tpc.2.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Goldberg R. B., Hoschek G., Tam S. H., Ditta G. S., Breidenbach R. W. Abundance, diversity, and regulation of mRNA sequence sets in soybean embryogenesis. Dev Biol. 1981 Apr 30;83(2):201–217. doi: 10.1016/0012-1606(81)90467-x. [DOI] [PubMed] [Google Scholar]
- Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
- Hanson D. D., Hamilton D. A., Travis J. L., Bashe D. M., Mascarenhas J. P. Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell. 1989 Feb;1(2):173–179. doi: 10.1105/tpc.1.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
- Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
- Mascarenhas J. P. The Male Gametophyte of Flowering Plants. Plant Cell. 1989 Jul;1(7):657–664. doi: 10.1105/tpc.1.7.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raghavan V. Distribution of poly(A)-containing RNA during normal pollen development and during induced pollen embryogenesis in Hyoscyamus niger. J Cell Biol. 1981 Jun;89(3):593–606. doi: 10.1083/jcb.89.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Twell D., Wing R., Yamaguchi J., McCormick S. Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet. 1989 Jun;217(2-3):240–245. doi: 10.1007/BF02464887. [DOI] [PubMed] [Google Scholar]
- Vergne P., Dumas C. Isolation of viable wheat male gametophytes of different stages of development and variations in their protein patterns. Plant Physiol. 1988 Dec;88(4):969–972. doi: 10.1104/pp.88.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]