Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Dec;100(4):1852–1857. doi: 10.1104/pp.100.4.1852

Rapid Changes in Cell Wall Yielding of Elongating Begonia argenteo-guttata L. Leaves in Response to Changes in Plant Water Status 1

Marcelo D Serpe 1,2, Mark A Matthews 1
PMCID: PMC1075875  PMID: 16653208

Abstract

Elongation and epidermal cell turgor (P) of Begonia argenteoguttata L. leaves were simultaneously measured to determine the wall-yielding behavior of growing leaf cells in response to changes in plant water status. Rapid changes in plant water status were imposed by irrigating the rooting media with solutions of −0.20 and −0.30 MPa mannitol. These treatments caused decreases in P of 0.09 and 0.17 MPa, respectively. The decreases in P were complete within 10 min, and P did not change thereafter. Following treatments, leaf elongation was nil for periods of 25 to 38 min. Subsequently, elongation recovered to steady rates that were 45 or 75% lower than in the well-watered controls. Leaves of plants that were pretreated with −0.30 MPa of mannitol and rewatered showed an increase in P of 0.19 MPa, which was complete within 15 min; P did not change thereafter. Rewatering caused a several-fold increase in leaf elongation rates, which subsequently declined while P was increasing, to reach steady rates similar to that of the controls. Several estimates of elastic deformation indicated that most of the elongation responses to altered P were due to changes in irreversible deformation. The results showed that the initial effects of changes in P on leaf elongation were partially compensated for by changes in the cell wall-yielding properties. We conclude that linear relationships between P and adjusted growth rates are not necessarily indicative of constant wall-yielding properties. Instead, these relationships may reflect the effect of P on wall-loosening processes.

Full text

PDF
1852

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acevedo E., Hsiao T. C., Henderson D. W. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol. 1971 Nov;48(5):631–636. doi: 10.1104/pp.48.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyer J. S. Relationship of water potential to growth of leaves. Plant Physiol. 1968 Jul;43(7):1056–1062. doi: 10.1104/pp.43.7.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cosgrove D. J., Cleland R. E. Solutes in the free space of growing stem tissues. Plant Physiol. 1983 Jun;72(2):326–331. doi: 10.1104/pp.72.2.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cosgrove D. J. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta. 1987;171:266–278. [PubMed] [Google Scholar]
  5. Green P. B., Cummins W. R. Growth rate and turgor pressure: auxin effect studies with an automated apparatus for single coleoptiles. Plant Physiol. 1974 Dec;54(6):863–869. doi: 10.1104/pp.54.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green P. B., Erickson R. O., Buggy J. Metabolic and physical control of cell elongation rate: in vivo studies in nitella. Plant Physiol. 1971 Mar;47(3):423–430. doi: 10.1104/pp.47.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Komalavilas P., Zhu J. K., Nothnagel E. A. Arabinogalactan-proteins from the suspension culture medium and plasma membrane of rose cells. J Biol Chem. 1991 Aug 25;266(24):15956–15965. [PubMed] [Google Scholar]
  8. Lockhart J. A. An analysis of irreversible plant cell elongation. J Theor Biol. 1965 Mar;8(2):264–275. doi: 10.1016/0022-5193(65)90077-9. [DOI] [PubMed] [Google Scholar]
  9. Matsuda K., Riazi A. Stress-induced osmotic adjustment in growing regions of barley leaves. Plant Physiol. 1981 Sep;68(3):571–576. doi: 10.1104/pp.68.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Michelena V. A., Boyer J. S. Complete turgor maintenance at low water potentials in the elongating region of maize leaves. Plant Physiol. 1982 May;69(5):1145–1149. doi: 10.1104/pp.69.5.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Métraux J. P., Richmond P. A., Taiz L. Control of Cell Elongation in Nitella by Endogenous Cell Wall pH Gradients: MULTIAXIAL EXTENSIBILITY AND GROWTH STUDIES. Plant Physiol. 1980 Feb;65(2):204–210. doi: 10.1104/pp.65.2.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nonami H., Boyer J. S. Turgor and growth at low water potentials. Plant Physiol. 1989 Mar;89(3):798–804. doi: 10.1104/pp.89.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ortega J. K. Augmented growth equation for cell wall expansion. Plant Physiol. 1985 Sep;79(1):318–320. doi: 10.1104/pp.79.1.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shackel K. A., Matthews M. A., Morrison J. C. Dynamic Relation between Expansion and Cellular Turgor in Growing Grape (Vitis vinifera L.) Leaves. Plant Physiol. 1987 Aug;84(4):1166–1171. doi: 10.1104/pp.84.4.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES