Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Dec;100(4):1987–1993. doi: 10.1104/pp.100.4.1987

Phenotypic Complementation of High CO2-Requiring Mutants of the Cyanobacterium Synechococcus sp. Strain PCC 7942 by Inosine 5′-Monophosphate 1

Rakefet Schwarz 1, Judy Lieman-Hurwitz 1, Miriam Hassidim 1, Aaron Kaplan 1
PMCID: PMC1075895  PMID: 16653228

Abstract

The high CO2-requiring mutants of Synechococcus PCC 7942, D4 and R14, were obtained by deletion or inactivation (respectively) of an open reading frame immediately downstream of rbc (the operon encoding the subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase). These mutants exhibit photosynthetic characteristics similar to those of high CO2-grown wild type, unlike other cyanobacterial high CO2-requiring mutants, where the apparent photosynthetic affinity for inorganic carbon is approximately 2 orders of magnitude lower than that of the wild type. Sequence analysis and metabolic complementation of the mutants by inosine 5′-monophosphate identified this open reading frame as the cyanobacterial equivalent of purK, the eubacterial gene encoding subunit II of phosphoribosyl aminoimidazole carboxylase in the purine biosynthetic pathway. Exposure of high CO2-grown Synechococcus to low CO2 conditions led to the induction of transcription of purK. It is suggested that the high CO2-requiring phenotype of these mutants resulted from the defect in purine biosynthesis after exposure to low CO2. We also raise the possibility that the level of cellular purines is involved in the process of adaptation of cyanobacteria to low concentrations of CO2.

Full text

PDF
1987

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badger M. R. Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem Biophys. 1980 Apr 15;201(1):247–254. doi: 10.1016/0003-9861(80)90509-3. [DOI] [PubMed] [Google Scholar]
  2. Ebbole D. J., Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem. 1987 Jun 15;262(17):8274–8287. [PubMed] [Google Scholar]
  3. Friedberg D., Kaplan A., Ariel R., Kessel M., Seijffers J. The 5'-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. J Bacteriol. 1989 Nov;171(11):6069–6076. doi: 10.1128/jb.171.11.6069-6076.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hamilton P. T., Reeve J. N. Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii. Mol Gen Genet. 1985;200(1):47–59. doi: 10.1007/BF00383311. [DOI] [PubMed] [Google Scholar]
  5. Kaplan A., Schwarz R., Lieman-Hurwitz J., Reinhold L. Physiological and molecular aspects of the inorganic carbon-concentrating mechanism in cyanobacteria. Plant Physiol. 1991 Nov;97(3):851–855. doi: 10.1104/pp.97.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Marcus Y., Schwarz R., Friedberg D., Kaplan A. High CO(2) Requiring Mutant of Anacystis nidulans R(2). Plant Physiol. 1986 Oct;82(2):610–612. doi: 10.1104/pp.82.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marek L. F., Spalding M. H. Changes in Photorespiratory Enzyme Activity in Response to Limiting CO(2) in Chlamydomonas reinhardtii. Plant Physiol. 1991 Sep;97(1):420–425. doi: 10.1104/pp.97.1.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ogawa T. A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4275–4279. doi: 10.1073/pnas.88.10.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Omata T., Ogawa T., Marcus Y., Friedberg D., Kaplan A. Adaptation to Low CO(2) Level in a Mutant of Anacystis nidulans R(2) which Requires High CO(2) for Growth. Plant Physiol. 1987 Apr;83(4):892–894. doi: 10.1104/pp.83.4.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pierce J., Carlson T. J., Williams J. G. A cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5753–5757. doi: 10.1073/pnas.86.15.5753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Price G. D., Badger M. R. Isolation and Characterization of High CO(2)-Requiring-Mutants of the Cyanobacterium Synechococcus PCC7942 : Two Phenotypes that Accumulate Inorganic Carbon but Are Apparently Unable to Generate CO(2) within the Carboxysome. Plant Physiol. 1989 Oct;91(2):514–525. doi: 10.1104/pp.91.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schneider G. J., Lang J. D., Haselkorn R. Promoter recognition by the RNA polymerase from vegetative cells of the cyanobacterium Anabaena 7120. Gene. 1991 Aug 30;105(1):51–60. doi: 10.1016/0378-1119(91)90513-b. [DOI] [PubMed] [Google Scholar]
  13. Schwarz R., Friedberg D., Kaplan A. Is there a role for the 42 kilodalton polypeptide in inorganic carbon uptake by cyanobacteria? Plant Physiol. 1988 Oct;88(2):284–288. doi: 10.1104/pp.88.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smart L. B., McIntosh L. Expression of photosynthesis genes in the cyanobacterium Synechocystis sp. PCC 6803: psaA-psaB and psbA transcripts accumulate in dark-grown cells. Plant Mol Biol. 1991 Nov;17(5):959–971. doi: 10.1007/BF00037136. [DOI] [PubMed] [Google Scholar]
  15. Stotz A., Linder P. The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene. 1990 Oct 30;95(1):91–98. doi: 10.1016/0378-1119(90)90418-q. [DOI] [PubMed] [Google Scholar]
  16. Suzuki E., Fukuzawa H., Miyachi S. Identification of a genomic region that complements a temperature-sensitive, high CO2-requiring mutant of the cyanobacterium, Synechococcus sp. PCC7942. Mol Gen Genet. 1991 May;226(3):401–408. doi: 10.1007/BF00260652. [DOI] [PubMed] [Google Scholar]
  17. Szankasi P., Heyer W. D., Schuchert P., Kohli J. DNA sequence analysis of the ade6 gene of Schizosaccharomyces pombe. Wild-type and mutant alleles including the recombination host spot allele ade6-M26. J Mol Biol. 1988 Dec 20;204(4):917–925. doi: 10.1016/0022-2836(88)90051-4. [DOI] [PubMed] [Google Scholar]
  18. Taglicht D., Padan E., Schuldiner S. Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli. J Biol Chem. 1991 Jun 15;266(17):11289–11294. [PubMed] [Google Scholar]
  19. Tiedeman A. A., Keyhani J., Kamholz J., Daum H. A., 3rd, Gots J. S., Smith J. M. Nucleotide sequence analysis of the purEK operon encoding 5'-phosphoribosyl-5-aminoimidazole carboxylase of Escherichia coli K-12. J Bacteriol. 1989 Jan;171(1):205–212. doi: 10.1128/jb.171.1.205-212.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Watanabe W., Sampei G., Aiba A., Mizobuchi K. Identification and sequence analysis of Escherichia coli purE and purK genes encoding 5'-phosphoribosyl-5-amino-4-imidazole carboxylase for de novo purine biosynthesis. J Bacteriol. 1989 Jan;171(1):198–204. doi: 10.1128/jb.171.1.198-204.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES