Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Dec;100(4):2030–2034. doi: 10.1104/pp.100.4.2030

Isolation and Characterization of the Tricarboxylate Transporter from Pea Mitochondria 1

Cecilia A McIntosh 1, David J Oliver 1
PMCID: PMC1075902  PMID: 16653235

Abstract

The tricarboxylate transporter was solubilized from pea (Pisum sativum) mitochondria with Triton X-114, partially purified over a hydroxylapatite column, and reconstituted in phospholipid vesicles. The proteoliposomes exchanged external [14C]citrate for internal citrate or malate but not for preloaded d,l-isocitrate. Similarly, although external malate, succinate, and citrate competed with [14C]citrate in the exchange reaction, d,l-isocitrate and phosphoenolpyruvate did not. This tricarboxylate transporter differed from the equivalent activity from animal tissues in that it did not transport isocitrate and phosphoenolpyruvate. In addition, tricarboxylate transport in isolated plant mitochondria, as well as that measured with the partially purified and reconstituted transporter, was less active than the transporter isolated from animal tissues.

Full text

PDF
2030

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquila H., Link T. A., Klingenberg M. Solute carriers involved in energy transfer of mitochondria form a homologous protein family. FEBS Lett. 1987 Feb 9;212(1):1–9. doi: 10.1016/0014-5793(87)81546-6. [DOI] [PubMed] [Google Scholar]
  2. Birnberg P. R., Hanson J. B. Mechanisms of citrate transport and exchange in corn mitochondria. Plant Physiol. 1983 Apr;71(4):803–809. doi: 10.1104/pp.71.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnberg P. R., Jayroe D. L., Hanson J. B. Citrate transport in corn mitochondria. Plant Physiol. 1982 Aug;70(2):511–516. doi: 10.1104/pp.70.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bisaccia F., De Palma A., Palmieri F. Identification and purification of the tricarboxylate carrier from rat liver mitochondria. Biochim Biophys Acta. 1989 Nov 23;977(2):171–176. doi: 10.1016/s0005-2728(89)80068-4. [DOI] [PubMed] [Google Scholar]
  5. Brouquisse R., Nishimura M., Gaillard J., Douce R. Characterization of a cytosolic aconitase in higher plant cells. Plant Physiol. 1987 Aug;84(4):1402–1407. doi: 10.1104/pp.84.4.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Claeys D., Azzi A. Tricarboxylate carrier of bovine liver mitochondria. Purification and reconstitution. J Biol Chem. 1989 Sep 5;264(25):14627–14630. [PubMed] [Google Scholar]
  7. Genchi G., De Santis A., Ponzone C., Palmieri F. Partial Purification and Reconstitution of the alpha-Ketoglutarate Carrier from Corn (Zea mays L.) Mitochondria. Plant Physiol. 1991 Aug;96(4):1003–1007. doi: 10.1104/pp.96.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Journet E. P., Douce R. Mechanisms of citrate oxidation by percoll-purified mitochondria from potato tuber. Plant Physiol. 1983 Jul;72(3):802–808. doi: 10.1104/pp.72.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jung D. W., Laties G. G. Citrate and succinate uptake by potato mitochondria. Plant Physiol. 1979 Apr;63(4):591–597. doi: 10.1104/pp.63.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaplan R. S., Pedersen P. L. Isolation and reconstitution of the n-butylmalonate-sensitive dicarboxylate transporter from rat liver mitochondria. J Biol Chem. 1985 Aug 25;260(18):10293–10298. [PubMed] [Google Scholar]
  11. Kaplan R. S., Pratt R. D., Pedersen P. L. Purification and characterization of the reconstitutively active phosphate transporter from rat liver mitochondria. J Biol Chem. 1986 Sep 25;261(27):12767–12773. [PubMed] [Google Scholar]
  12. Kimpel J. A., Hanson J. B. Activation of endogenous respiration and anion transport in corn mitochondria by acidification of the medium. Plant Physiol. 1977 Dec;60(6):933–934. doi: 10.1104/pp.60.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klingenberg M. Kinetic study of the tricarboxylate carrier in rat liver mitochondria. Eur J Biochem. 1972 Apr 24;26(4):587–594. doi: 10.1111/j.1432-1033.1972.tb01801.x. [DOI] [PubMed] [Google Scholar]
  14. LaNoue K. F., Schoolwerth A. C. Metabolite transport in mitochondria. Annu Rev Biochem. 1979;48:871–922. doi: 10.1146/annurev.bi.48.070179.004255. [DOI] [PubMed] [Google Scholar]
  15. Oliver D. J., Walker G. H. Characterization of the transport of oxaloacetate by pea leaf mitochondria. Plant Physiol. 1984 Oct;76(2):409–413. doi: 10.1104/pp.76.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Robinson B. H., Williams G. R., Halperin M. L., Leznoff C. C. The sensitivity of the exchange reactions of tricarboxylate, 2-oxoglutarate and dicarboxylate transporting systems of rat liver mitochondria to inhibition by 2-pentylmalonate, p-iodobenzylmalonate, and benzene 1,2,3-tricarboxylate. Eur J Biochem. 1971 May 11;20(1):65–71. doi: 10.1111/j.1432-1033.1971.tb01363.x. [DOI] [PubMed] [Google Scholar]
  17. Stipani I., Palmieri F. Purification of the active mitochondrial tricarboxylate carrier by hydroxylapatite chromatography. FEBS Lett. 1983 Sep 19;161(2):269–274. doi: 10.1016/0014-5793(83)81023-0. [DOI] [PubMed] [Google Scholar]
  18. Stipani I., Zara V., Zaki L., Prezioso G., Palmieri F. Inhibition of the mitochondrial tricarboxylate carrier by arginine-specific reagents. FEBS Lett. 1986 Sep 15;205(2):282–286. doi: 10.1016/0014-5793(86)80913-9. [DOI] [PubMed] [Google Scholar]
  19. Vivekananda J., Beck C. F., Oliver D. J. Monoclonal antibodies as tools in membrane biochemistry. Identification and partial characterization of the dicarboxylate transporter from pea leaf mitochondria. J Biol Chem. 1988 Apr 5;263(10):4782–4788. [PubMed] [Google Scholar]
  20. Vivekananda J., Oliver D. J. Isolation and partial characterization of the glutamate/aspartate transporter from pea leaf mitochondria using a specific monoclonal antibody. Plant Physiol. 1989 Sep;91(1):272–277. doi: 10.1104/pp.91.1.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Walker G. H., Oliver D. J., Sarojini G. Simultaneous oxidation of glycine and malate by pea leaf mitochondria. Plant Physiol. 1982 Nov;70(5):1465–1469. doi: 10.1104/pp.70.5.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Walker G. H., Sarojini G., Oliver D. J. Identification of a glycine transporter from pea leaf mitochondria. Biochem Biophys Res Commun. 1982 Aug;107(3):856–861. doi: 10.1016/0006-291x(82)90601-5. [DOI] [PubMed] [Google Scholar]
  23. Winning B. M., Day C. D., Sarah C. J., Leaver C. J. Nucleotide sequence of two cDNAs encoding the adenine nucleotide translocator from Zea mays L. Plant Mol Biol. 1991 Aug;17(2):305–307. doi: 10.1007/BF00039511. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES