Abstract
Glyoxysomal membranes from germinating castor bean (Ricinus communis L. cv Hale) endosperm contain an NADH dehydrogenase. This enzyme can utilize extraorganellar ascorbate free-radical as a substrate and can oxidize NADH at a rate which can support intraglyoxysomal demand for NAD+. NADH:ascorbate free-radical reductase was found to be membrane-associated, and the activity remained in the membrane fraction after lysis of glyoxysomes by osmotic shock, followed by pelleting of the membranes. In whole glyoxysomes, NADH:ascorbate free-radical reductase, like NADH:ferricyanide reductase and unlike NADH:cytochrome c reductase, was insensitive to trypsin and was not inactivated by Triton X-100 detergent. These results suggest that ascorbate free-radical is reduced by the same component which reduces ferricyanide in the glyoxysomal membrane redox system. NADH:ascorbate free-radical reductase comigrated with NADH:ferricyanide and cytochrome c reductases when glyoxy-somal membranes were solubilized with detergent and subjected to rate-zonal centrifugation. The results suggest that ascorbate free-radical, when reduced to ascorbate by membrane redox system, could serve as a link between glyoxysomal metabolism and other cellular activities.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clark M. G., Partick E. J., Crane F. L. Properties and regulation of a trans-plasma membrane redox system in rat liver. Biochem J. 1982 Jun 15;204(3):795–801. doi: 10.1042/bj2040795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper T. G., Beevers H. Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem. 1969 Jul 10;244(13):3514–3520. [PubMed] [Google Scholar]
- Cooper T. G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem. 1969 Jul 10;244(13):3507–3513. [PubMed] [Google Scholar]
- Donaldson R. P., Fang T. K. beta-Oxidation and Glyoxylate Cycle Coupled to NADH: Cytochrome c and Ferricyanide Reductases in Glyoxysomes. Plant Physiol. 1987 Nov;85(3):792–795. doi: 10.1104/pp.85.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donaldson R. P. Nicotinamide cofactors (NAD and NADP) in glyoxysomes, mitochondria, and plastids isolated from castor bean endosperm. Arch Biochem Biophys. 1982 Apr 15;215(1):274–279. doi: 10.1016/0003-9861(82)90305-8. [DOI] [PubMed] [Google Scholar]
- Donaldson R. P. Organelle Membranes from Germinating Castor Bean Endosperm: II. ENZYMES, CYTOCHROMES, AND PERMEABILITY OF THE GLYOXYSOME MEMBRANE. Plant Physiol. 1981 Jan;67(1):21–25. doi: 10.1104/pp.67.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerhardt B. P., Beevers H. Developmental studies on glyoxysomes in Ricinus endosperm. J Cell Biol. 1970 Jan;44(1):94–102. doi: 10.1083/jcb.44.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hicks D. B., Donaldson R. P. Electron transport in glyoxysomal membranes. Arch Biochem Biophys. 1982 Apr 15;215(1):280–288. doi: 10.1016/0003-9861(82)90306-x. [DOI] [PubMed] [Google Scholar]
- Ito A., Hayashi S., Yoshida T. Participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in NADH-semidehydroascorbic acid reductase activity of rat liver. Biochem Biophys Res Commun. 1981 Jul 30;101(2):591–598. doi: 10.1016/0006-291x(81)91300-0. [DOI] [PubMed] [Google Scholar]
- Luster D. G., Bowditch M. I., Eldridge K. M., Donaldson R. P. Characterization of membrane-bound electron transport enzymes from castor bean glyoxysomes and endoplasmic reticulum. Arch Biochem Biophys. 1988 Aug 15;265(1):50–61. doi: 10.1016/0003-9861(88)90370-0. [DOI] [PubMed] [Google Scholar]
- Luster D. G., Donaldson R. P. Orientation of electron transport activities in the membrane of intact glyoxysomes isolated from castor bean endosperm. Plant Physiol. 1987 Nov;85(3):796–800. doi: 10.1104/pp.85.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Tolbert N. E., Bieber L. L. Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol. 1981;72:296–303. doi: 10.1016/s0076-6879(81)72018-4. [DOI] [PubMed] [Google Scholar]
- Mettler I. J., Beevers H. Oxidation of NADH in Glyoxysomes by a Malate-Aspartate Shuttle. Plant Physiol. 1980 Oct;66(4):555–560. doi: 10.1104/pp.66.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miflin B. J., Beevers H. Isolation of intact plastids from a range of plant tissues. Plant Physiol. 1974 Jun;53(6):870–874. doi: 10.1104/pp.53.6.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishikimi M. Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem Biophys Res Commun. 1975 Mar 17;63(2):463–468. doi: 10.1016/0006-291x(75)90710-x. [DOI] [PubMed] [Google Scholar]
- Nishino H., Ito A. Subcellular distribution of OM cytochrome b-mediated NADH-semidehydroascorbate reductase activity in rat liver. J Biochem. 1986 Dec;100(6):1523–1531. doi: 10.1093/oxfordjournals.jbchem.a121859. [DOI] [PubMed] [Google Scholar]
- Puntarulo S., Sánchez R. A., Boveris A. Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiol. 1988 Feb;86(2):626–630. doi: 10.1104/pp.86.2.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose R. C. Solubility properties of reduced and oxidized ascorbate as determinants of membrane permeation. Biochim Biophys Acta. 1987 Apr 16;924(1):254–256. doi: 10.1016/0304-4165(87)90094-8. [DOI] [PubMed] [Google Scholar]
- Sandalio L. M., Fernández V. M., Rupérez F. L., Del Río L. A. Superoxide free radicals are produced in glyoxysomes. Plant Physiol. 1988 May;87(1):1–4. doi: 10.1104/pp.87.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strittmatter P., Ozols J. The restricted tryptic cleavage of cytochrome b5. J Biol Chem. 1966 Oct 25;241(20):4787–4792. [PubMed] [Google Scholar]
- Van Veldhoven P. P., Just W. W., Mannaerts G. P. Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem. 1987 Mar 25;262(9):4310–4318. [PubMed] [Google Scholar]
- Wakefield L. M., Cass A. E., Radda G. K. Functional coupling between enzymes of the chromaffin granule membrane. J Biol Chem. 1986 Jul 25;261(21):9739–9745. [PubMed] [Google Scholar]