Abstract
An artificial Na+ gradient across the envelope (Na+ jump) enhanced pyruvate uptake in the dark into mesophyll chloroplasts of a C4 plant, Panicum miliaceum (NAD-malic enzyme type) (J Ohnishi, R Kanai [1987] FEBS Lett 219:347). In the present study, 22Na+ and pyruvate uptake were examined in mesophyll chloroplasts of several species of C4 plants. Enhancement of pyruvate uptake by a Na+ jump in the dark was also seen in mesophyll chloroplasts of Urochloa panicoides and Panicum maximum (phosphoenolpyruvate carboxykinase types) but not in Zea mays or Sorghum bicolor (NADP-malic enzyme types). In mesophyll chloroplasts of P. miliaceum and P. maximum, pyruvate in turn enhanced Na+ uptake in the dark when added together with Na+. When flux of endogenous Na+ was measured in these mesophyll chloroplasts preincubated with 22Na+, pyruvate addition induced Na+ influx, and the extent of the pyruvate-induced Na+ influx positively correlated with that of pyruvate uptake. A Na+/H+ exchange ionophore, monensin, nullified all the above mutual effects of Na+ and pyruvate in mesophyll chloroplasts of P. miliaceum, while it accelerated Na+ uptake and increased equilibrium level of chloroplast 22Na+. Measurements of initial uptake rates of pyruvate and Na+ gave a stoichiometry close to 1:1. These results point to Na+/pyruvate cotransport into mesophyll chloroplasts of some C4 plants.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blumwald E., Poole R. J. Na/H Antiport in Isolated Tonoplast Vesicles from Storage Tissue of Beta vulgaris. Plant Physiol. 1985 May;78(1):163–167. doi: 10.1104/pp.78.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownell P. F., Crossland C. J. The requirement for sodium as a micronutrient by species having the c(4) dicarboxylic photosynthetic pathway. Plant Physiol. 1972 May;49(5):794–797. doi: 10.1104/pp.49.5.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demmig B., Gimmler H. Properties of the Isolated Intact Chloroplast at Cytoplasmic K Concentrations : I. Light-Induced Cation Uptake into Intact Chloroplasts is Driven by an Electrical Potential Difference. Plant Physiol. 1983 Sep;73(1):169–174. doi: 10.1104/pp.73.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harootunian A. T., Kao J. P., Eckert B. K., Tsien R. Y. Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes. J Biol Chem. 1989 Nov 15;264(32):19458–19467. [PubMed] [Google Scholar]
- Hind G., Nakatani H. Y., Izawa S. Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1484–1488. doi: 10.1073/pnas.71.4.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huber S. C., Edwards G. E. Transport in C4 mesophyll chloroplasts characterization of the pyruvate carrier. Biochim Biophys Acta. 1977 Dec 23;462(3):583–602. doi: 10.1016/0005-2728(77)90103-7. [DOI] [PubMed] [Google Scholar]
- Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
- Krulwich T. A. Na+/H+ antiporters. Biochim Biophys Acta. 1983 Dec 30;726(4):245–264. doi: 10.1016/0304-4173(83)90011-3. [DOI] [PubMed] [Google Scholar]
- Maury W. J., Huber S. C., Moreland D. E. Effects of Magnesium on Intact Chloroplasts : II. CATION SPECIFICITY AND INVOLVEMENT OF THE ENVELOPE ATPase IN (SODIUM) POTASSIUM/PROTON EXCHANGE ACROSS THE ENVELOPE. Plant Physiol. 1981 Dec;68(6):1257–1263. doi: 10.1104/pp.68.6.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohnishi J., Flügge U. I., Heldt H. W. Phosphate Translocator of Mesophyll and Bundle Sheath Chloroplasts of a C(4) Plant, Panicum miliaceum L. : Identification and Kinetic Characterization. Plant Physiol. 1989 Dec;91(4):1507–1511. doi: 10.1104/pp.91.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta D., Matoh T., Takahashi E. Sodium-Stimulated NO(3) Uptake in Amaranthus tricolor L. Plants. Plant Physiol. 1988 May;87(1):223–225. doi: 10.1104/pp.87.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
- Schröppel-Meier G., Kaiser W. M. Ion Homeostasis in Chloroplasts under Salinity and Mineral Deficiency : I. Solute Concentrations in Leaves and Chloroplasts from Spinach Plants under NaCl or NaNO(3) Salinity. Plant Physiol. 1988 Aug;87(4):822–827. doi: 10.1104/pp.87.4.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sepúlveda F. V., Robinson J. W. Harmaline, a potent inhibitor of sodium-dependent transport. Biochim Biophys Acta. 1974 Dec 24;373(3):527–531. doi: 10.1016/0005-2736(74)90035-2. [DOI] [PubMed] [Google Scholar]
- Sillerud L. O., Heyser J. W. Use of Na-Nuclear Magnetic Resonance To Follow Sodium Uptake and Efflux in NaCl-Adapted and Nonadapted Millet (Panicum miliaceum) Suspensions. Plant Physiol. 1984 May;75(1):269–272. doi: 10.1104/pp.75.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wintermans J. F., de Mots A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta. 1965 Nov 29;109(2):448–453. doi: 10.1016/0926-6585(65)90170-6. [DOI] [PubMed] [Google Scholar]
- Wright J. K., Seckler R., Overath P. Molecular aspects of sugar:ion cotransport. Annu Rev Biochem. 1986;55:225–248. doi: 10.1146/annurev.bi.55.070186.001301. [DOI] [PubMed] [Google Scholar]
