Abstract
The hydrolytic specificity of a 30 kilodalton cysteine proteinase purified from germinated barley (Hordeum vulgare L. cv Morex) was investigated using high performance liquid chromatography to characterize its hydrolysis of two small barley seed proteins, the α- and β-hordothionins. The reduced and pyridylethylated thionins were rapidly cleaved, resulting in the production of a limited number of peptides. Peptide bonds Gly9-Arg10, Cys 16-Arg17, Cys25-Ala26, and Thr34-Ser35 were most susceptible to hydrolysis, the peptide bonds Arg5-Ser6, Arg19-Gly20 in both thionins and Lys38-Cys39 in β-hordothionin and Cys29-Arg30 of α-hordothionin being broken at much slower rates. The hydrolysis patterns were highly reproducible from assay to assay and with various enzyme preparations. The specificity was apparently defined by the amino acids in the P2 position, not those immediately adjacent to the susceptible bonds. The P2 amino acid residues of the released peptides were always either leucine, valine, tyrosine, or pyridylethylcysteine. From these observations and from the rates of release of the various peptides, it appears that the barley 30 kilodalton endoproteinase has an S2 subsite that preferentially binds the leucine side chain: i.e. for hydrolyzing the peptide bond P1-P1′ in the general sequence NH2—P2-P1-P1′—COOH, the enzyme is selective for leucine and, to a lesser extent, valine and tyrosine at position P2. The barley proteinase thus resembles two other cysteine proteinases, papain and Streptococcal proteinase, in its specificity.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumgartner B., Chrispeels M. J. Purification and characterization of vicilin peptidohydrolase, the major endopeptidase in the cotyledons of mung-bean seedlings. Eur J Biochem. 1977 Jul 15;77(2):223–233. doi: 10.1111/j.1432-1033.1977.tb11661.x. [DOI] [PubMed] [Google Scholar]
- Clore G. M., Sukumaran D. K., Gronenborn A. M., Teeter M. M., Whitlow M., Jones B. L. Nuclear magnetic resonance study of the solution structure of alpha 1-purothionin. Sequential resonance assignment, secondary structure and low resolution tertiary structure. J Mol Biol. 1987 Feb 5;193(3):571–578. doi: 10.1016/0022-2836(87)90267-1. [DOI] [PubMed] [Google Scholar]
- Csoma C., Polgár L. Proteinase from germinating bean cotyledons. Evidence for involvement of a thiol group in catalysis. Biochem J. 1984 Sep 15;222(3):769–776. doi: 10.1042/bj2220769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garg G. K., Virupaksha T. K. Acid protease from germinated sorghum. 2. Substrate specificity with synthetic peptides and ribonuclease A. Eur J Biochem. 1970 Nov;17(1):13–18. doi: 10.1111/j.1432-1033.1970.tb01125.x. [DOI] [PubMed] [Google Scholar]
- Gerwin B. I., Stein W. H., Moore S. On the specificity of streptococcal proteinase. J Biol Chem. 1966 Jul 25;241(14):3331–3339. [PubMed] [Google Scholar]
- Hase T., Matsubara H., Yoshizumi H. Disulfide bonds of purothionine, a lethal toxin for yeasts. J Biochem. 1978 Jun;83(6):1671–1678. doi: 10.1093/oxfordjournals.jbchem.a132079. [DOI] [PubMed] [Google Scholar]
- Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
- Hill R. L. Hydrolysis of proteins. Adv Protein Chem. 1965;20:37–107. doi: 10.1016/s0065-3233(08)60388-5. [DOI] [PubMed] [Google Scholar]
- Lookhart G. L., Jones B. L., Cooper D. B., Hall S. B. A method for hydrolyzing and determining the amino acid compositions of picomole quantities of proteins in less than 3 hours. J Biochem Biophys Methods. 1982 Dec;7(1):15–23. doi: 10.1016/0165-022x(82)90032-x. [DOI] [PubMed] [Google Scholar]
- Mak A. S., Jones B. L. Separation and characterisation of chymotryptic peptides from alpha- and beta-purothionins of wheat. J Sci Food Agric. 1976 Mar;27(3):205–213. doi: 10.1002/jsfa.2740270302. [DOI] [PubMed] [Google Scholar]
- Ozaki Y., Wada K., Hase T., Matsubara H., Nakanishi T., Yoshizumi H. Amino acid sequence of a purothionin homolog from barley flour. J Biochem. 1980 Feb;87(2):549–555. doi: 10.1093/oxfordjournals.jbchem.a132777. [DOI] [PubMed] [Google Scholar]
- Poulle M., Jones B. L. A Proteinase from Germinating Barley : I. Purification and Some Physical Properties of a 30 kD Cysteine Endoproteinase from Green Malt. Plant Physiol. 1988 Dec;88(4):1454–1460. doi: 10.1104/pp.88.4.1454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun. 1968 Sep 6;32(5):898–902. doi: 10.1016/0006-291x(68)90326-4. [DOI] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
