Abstract
We screened a total of 1365 pea (Pisum sativum) lines for response to inoculation with Agrobacterium tumefaciens, strain B6, and characterized resistance in one cultivar, Sweet Snap. Sweet Snap seedlings were highly resistant to tumorigenesis under most conditions. Resistance was overcome at inoculum concentrations of greater than 109 bacteria per milliliter. At such high concentrations, very small tumors developed on Sweet Snap in response to four wide-host-range Agrobacterium strains, but tumors on other cultivars were two-to sevenfold larger than those that formed on Sweet Snap. The hypervirulent strain A281 induced larger tumors on Sweet Snap than did other Agrobacterium strains, but tumors on other genotypes were more than 100% larger than those on Sweet Snap. Physiological experiments suggested that tumorigenesis in Sweet Snap is not blocked in early stages of infection, and genetic analysis indicated that inheritance of resistance to crown gall is a quantitative trait. In addition to the observed resistance in Sweet Snap, three `supersusceptible' genotypes, which developed very large tumors, also were identified.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Garfinkel D. J., Nester E. W. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol. 1980 Nov;144(2):732–743. doi: 10.1128/jb.144.2.732-743.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawes M. C., Pueppke S. G. Variation in Binding and Virulence of Agrobacterium tumefaciens Chromosomal Virulence (chv) Mutant Bacteria on Different Plant Species. Plant Physiol. 1989 Sep;91(1):113–118. doi: 10.1104/pp.91.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawes M. C., Robbs S. L., Pueppke S. G. Use of a Root Tumorigenesis Assay to Detect Genotypic Variation in Susceptibility of Thirty-four Cultivars of Pisum sativum to Crown Gall. Plant Physiol. 1989 May;90(1):180–184. doi: 10.1104/pp.90.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hood E. E., Fraley R. T., Chilton M. D. Virulence of Agrobacterium tumefaciens Strain A281 on Legumes. Plant Physiol. 1987 Mar;83(3):529–534. doi: 10.1104/pp.83.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jin S. G., Komari T., Gordon M. P., Nester E. W. Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol. 1987 Oct;169(10):4417–4425. doi: 10.1128/jb.169.10.4417-4425.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owens L. D., Cress D. E. Genotypic variability of soybean response to agrobacterium strains harboring the ti or ri plasmids. Plant Physiol. 1985 Jan;77(1):87–94. doi: 10.1104/pp.77.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smarrelli J., Watters M. T., Diba L. H. Response of various cucurbits to infection by plasmid-harboring strains of agrobacterium. Plant Physiol. 1986 Oct;82(2):622–624. doi: 10.1104/pp.82.2.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith E. F., Townsend C. O. A PLANT-TUMOR OF BACTERIAL ORIGIN. Science. 1907 Apr 26;25(643):671–673. doi: 10.1126/science.25.643.671. [DOI] [PubMed] [Google Scholar]
- Watson B., Currier T. C., Gordon M. P., Chilton M. D., Nester E. W. Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol. 1975 Jul;123(1):255–264. doi: 10.1128/jb.123.1.255-264.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White F. F., Taylor B. H., Huffman G. A., Gordon M. P., Nester E. W. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol. 1985 Oct;164(1):33–44. doi: 10.1128/jb.164.1.33-44.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zambryski P., Tempe J., Schell J. Transfer and function of T-DNA genes from agrobacterium Ti and Ri plasmids in plants. Cell. 1989 Jan 27;56(2):193–201. doi: 10.1016/0092-8674(89)90892-1. [DOI] [PubMed] [Google Scholar]



