Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Jan;95(1):157–163. doi: 10.1104/pp.95.1.157

Effects of Polyamines on the Oxidation of Exogenous NADH by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria 1

Michela Rugolo 1, Fabiana Antognoni 1, Alberto Flamigni 1, Davide Zannoni 1
PMCID: PMC1077499  PMID: 16667944

Abstract

The effect of polyamines (putrescine, spermine, and spermidine) on the oxidation of exogenous NADH by Jerusalem artichoke (Helianthus tuberosus L. cv. OB1) mitochondria, have been studied. Addition of spermine and/or spermidine to a suspension of mitochondria in a low-cation medium (2 millimolar-K+) caused a decrease in the apparent Km and an increase in the apparent Vmax for the oxidation of exogenous NADH. These polycations released by screening effect the mitochondrially induced quenching of 9-aminoacridine fluorescence, their efficiency being dependent on the valency of the cation (C4+ > C3+). Conversely, putrescine only slightly affected both kinetic parameters of exogenous NADH oxidation and the number of fixed charges on the membranes. Spermine and spermidine, but not putrescine, decreased the apparent Km for Ca2+ from about 1 to about 0.2 micromolar, required to activate external NADH oxidation in a high-cation medium, containing physiological concentrations of Pi, Mg2+ and K+. The results are interpreted as evidence for a role of spermine and spermidine in the modulation of exogenous NADH oxidation by plant mitochondria in vivo.

Full text

PDF
157

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E. Effect of Mg2+ and spermine on the kinetics of Ca2+ transport in rat-liver mitochondria. J Bioenerg Biomembr. 1977 Feb;9(1):65–72. doi: 10.1007/BF00745043. [DOI] [PubMed] [Google Scholar]
  2. Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bers D. M. A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am J Physiol. 1982 May;242(5):C404–C408. doi: 10.1152/ajpcell.1982.242.5.C404. [DOI] [PubMed] [Google Scholar]
  4. Chow W. S., Barber J. 9-Aminoacridine fluorescence changes as a measure of surface charge density of the thylakoid membrane. Biochim Biophys Acta. 1980 Feb 8;589(2):346–352. doi: 10.1016/0005-2728(80)90050-x. [DOI] [PubMed] [Google Scholar]
  5. Douce R., Christensen E. L., Bonner W. D., Jr Preparation of intaintact plant mitochondria. Biochim Biophys Acta. 1972 Aug 17;275(2):148–160. doi: 10.1016/0005-2728(72)90035-7. [DOI] [PubMed] [Google Scholar]
  6. Douce R., Mannella C. A., Bonner W. D., Jr The external NADH dehydrogenases of intact plant mitochondria. Biochim Biophys Acta. 1973 Jan 18;292(1):105–116. doi: 10.1016/0005-2728(73)90255-7. [DOI] [PubMed] [Google Scholar]
  7. Iqbal Z., Koenig H. Polyamines appear to be second messengers in mediating Ca2+ fluxes and neurotransmitter release in potassium-depolarized synaptosomes. Biochem Biophys Res Commun. 1985 Dec 17;133(2):563–573. doi: 10.1016/0006-291x(85)90943-x. [DOI] [PubMed] [Google Scholar]
  8. Johnston S. P., Møller I. M., Palmer J. M. The stimulation of exogenous NADH oxidation in Jerusalem artichoke mitochondria by screening of charges on the membranes. FEBS Lett. 1979 Dec 1;108(1):28–32. doi: 10.1016/0014-5793(79)81171-0. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. MAGER J. The stabilizing effect of spermine and related polyamines and bacterial protoplasts. Biochim Biophys Acta. 1959 Dec;36:529–531. doi: 10.1016/0006-3002(59)90195-7. [DOI] [PubMed] [Google Scholar]
  11. Meers P., Hong K., Bentz J., Papahadjopoulos D. Spermine as a modulator of membrane fusion: interactions with acidic phospholipids. Biochemistry. 1986 Jun 3;25(11):3109–3118. doi: 10.1021/bi00359a007. [DOI] [PubMed] [Google Scholar]
  12. Moore A. L., Akerman K. E. Ca2+ stimulation of the external NADH dehydrogenase in Jerusalem artichoke (Helianthus tuberosum) mitochondria. Biochem Biophys Res Commun. 1982 Nov 30;109(2):513–517. doi: 10.1016/0006-291x(82)91751-x. [DOI] [PubMed] [Google Scholar]
  13. Møller I. M., Chow W. S., Palmer J. M., Barber J. 9-Aminoacridine as a fluorescent probe of the electrical diffuse layer associated with the membranes of plant mitochondria. Biochem J. 1981 Jan 1;193(1):37–46. doi: 10.1042/bj1930037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Møller I. M., Johnston S. P., Palmer J. M. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria. Biochem J. 1981 Feb 15;194(2):487–495. doi: 10.1042/bj1940487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Møller I. M., Palmer J. M. Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous MAD(P)H oxidation in plant mitochondria. Biochem J. 1981 Jun 1;195(3):583–588. doi: 10.1042/bj1950583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Møller I. M., Schwitzguébel J. P., Palmer J. M. Binding and screening by cations and the effect on exogenous NAD(P)H oxidation in Neurospora crassa mitochondria. Eur J Biochem. 1982 Mar;123(1):81–88. doi: 10.1111/j.1432-1033.1982.tb06501.x. [DOI] [PubMed] [Google Scholar]
  17. Nicchitta C. V., Williamson J. R. Spermine. A regulator of mitochondrial calcium cycling. J Biol Chem. 1984 Nov 10;259(21):12978–12983. [PubMed] [Google Scholar]
  18. Ohki S., Duax J. Effects of cations and polyamines on the aggregation and fusion of phosphatidylserine membranes. Biochim Biophys Acta. 1986 Sep 25;861(1):177–186. doi: 10.1016/0005-2736(86)90577-8. [DOI] [PubMed] [Google Scholar]
  19. Pistocchi R., Antognoni F., Bagni N., Zannoni D. Spermidine Uptake by Mitochondria of Helianthus tuberosus. Plant Physiol. 1990 Mar;92(3):690–695. doi: 10.1104/pp.92.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rottenberg H., Marbach M. Regulation of Ca2+ transport in brain mitochondria. I. The mechanism of spermine enhancement of Ca2+ uptake and retention. Biochim Biophys Acta. 1990 Mar 15;1016(1):77–86. doi: 10.1016/0005-2728(90)90009-s. [DOI] [PubMed] [Google Scholar]
  21. Schuber F. Influence of polyamines on membrane functions. Biochem J. 1989 May 15;260(1):1–10. doi: 10.1042/bj2600001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Searle G. F., Barber J., Mills J. D. 9-amino-acridine as a probe of the electrical double layer associated with the chloroplast thylakoid membranes. Biochim Biophys Acta. 1977 Sep 14;461(3):413–425. doi: 10.1016/0005-2728(77)90230-4. [DOI] [PubMed] [Google Scholar]
  23. Smith C. D., Snyderman R. Modulation of inositol phospholipid metabolism by polyamines. Biochem J. 1988 Nov 15;256(1):125–130. doi: 10.1042/bj2560125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Toninello A., Miotto G., Siliprandi D., Siliprandi N., Garlid K. D. On the mechanism of spermine transport in liver mitochondria. J Biol Chem. 1988 Dec 25;263(36):19407–19411. [PubMed] [Google Scholar]
  25. Wojcikiewicz R. J., Fain J. N. Polyamines inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis. Studies with permeabilized GH3 cells. Biochem J. 1988 Nov 1;255(3):1015–1021. doi: 10.1042/bj2551015. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES