Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Jan;95(1):264–268. doi: 10.1104/pp.95.1.264

Isolation and Characterization of a cDNA Coding for Pea Chloroplastic Carbonic Anhydrase 1

Nathalie Majeau 1, John R Coleman 1
PMCID: PMC1077516  PMID: 16667962

Abstract

Using a polyclonal antibody generated against the purified pea (Pisum sativum) carbonic anhydrase (CA) monomeric species, we have isolated and characterized a cDNA coding for this enzyme. Protein sequence analysis was used to confirm the identity of the clone. The presence of a large transit peptide suggests that CA is transported into the chloroplast and then processed to the mature size of approximately 26 kilodaltons. Northern hybridization, using the CA cDNA as a probe of total leaf RNA, revealed a single transcript of 1.45 kilobase pairs. This transcript was not detected in RNA extracted from root or etiolated leaf tissue. Comparison of the deduced amino acid sequence with that of spinach CA showed approximately 68% identity over the length of the nascent protein but with greater similarity observed within the mature protein sequences. In addition, regions of the pea and spinach CA proteins were found to be significantly similar to the Escherichia coli cyanate permease.

Full text

PDF
264

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins C. A., Patterson B. D., Graham D. Plant Carbonic Anhydrases: I. Distribution of Types among Species. Plant Physiol. 1972 Aug;50(2):214–217. doi: 10.1104/pp.50.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkins C. A., Patterson B. D., Graham D. Plant Carbonic Anhydrases: II. Preparation and Some Properties of Monocotyledon and Dicotyledon Enzyme Types. Plant Physiol. 1972 Aug;50(2):218–223. doi: 10.1104/pp.50.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailly J., Coleman J. R. Effect of CO(2) Concentration on Protein Biosynthesis and Carbonic Anhydrase Expression in Chlamydomonas reinhardtii. Plant Physiol. 1988 Aug;87(4):833–840. doi: 10.1104/pp.87.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnell J. N., Gibbs M. J., Mason J. G. Spinach chloroplastic carbonic anhydrase: nucleotide sequence analysis of cDNA. Plant Physiol. 1990 Jan;92(1):37–40. doi: 10.1104/pp.92.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coleman J. R., Grossman A. R. Biosynthesis of carbonic anhydrase in Chlamydomonas reinhardtii during adaptation to low CO(2). Proc Natl Acad Sci U S A. 1984 Oct;81(19):6049–6053. doi: 10.1073/pnas.81.19.6049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deutsch H. F. Carbonic anhydrases. Int J Biochem. 1987;19(2):101–113. doi: 10.1016/0020-711x(87)90320-x. [DOI] [PubMed] [Google Scholar]
  7. Fawcett T. W., Browse J. A., Volokita M., Bartlett S. G. Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. J Biol Chem. 1990 Apr 5;265(10):5414–5417. [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  9. Fernley R. T. Non-cytoplasmic carbonic anhydrases. Trends Biochem Sci. 1988 Sep;13(9):356–359. doi: 10.1016/0968-0004(88)90107-7. [DOI] [PubMed] [Google Scholar]
  10. Owttrim G. W., Coleman J. R. Regulation of expression and nucleotide sequence of the Anabaena variabilis recA gene. J Bacteriol. 1989 Oct;171(10):5713–5719. doi: 10.1128/jb.171.10.5713-5719.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Roeske C. A., Ogren W. L. Nucleotide sequence of pea cDNA encoding chloroplast carbonic anhydrase. Nucleic Acids Res. 1990 Jun 11;18(11):3413–3413. doi: 10.1093/nar/18.11.3413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sung Y. C., Fuchs J. A. Characterization of the cyn operon in Escherichia coli K12. J Biol Chem. 1988 Oct 15;263(29):14769–14775. [PubMed] [Google Scholar]
  14. Sung Y. C., Fuchs J. A. Identification and characterization of a cyanate permease in Escherichia coli K-12. J Bacteriol. 1989 Sep;171(9):4674–4678. doi: 10.1128/jb.171.9.4674-4678.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tashian R. E. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays. 1989 Jun;10(6):186–192. doi: 10.1002/bies.950100603. [DOI] [PubMed] [Google Scholar]
  16. Tingey S. V., Walker E. L., Coruzzi G. M. Glutamine synthetase genes of pea encode distinct polypeptides which are differentially expressed in leaves, roots and nodules. EMBO J. 1987 Jan;6(1):1–9. doi: 10.1002/j.1460-2075.1987.tb04710.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES