Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Jan;95(1):316–323. doi: 10.1104/pp.95.1.316

Ethylene Biosynthesis-Inducing Xylanase 1

II. Purification and Physical Characterization of the Enzyme Produced by Trichoderma viride

Jeffrey F D Dean 1,2, J D Anderson 1
PMCID: PMC1077524  PMID: 16667971

Abstract

The ethylene biosynthesis-inducing endoxylanase (EIX) from xylan-induced cultures of the fungus, Trichoderma viride, was purified to near homogeneity and compared with the EIX isolated from Cellulysin. Both enzymes migrate as 9.2 kilodalton proteins during gel filtration chromatography under nondenaturing conditions, but the mature polypeptide migrates as a 22 kilodalton band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition of the 22 kilodalton polypeptide is enriched by Gly, Ser, Thr, Trp, and Tyr, but depleted in Ala, Glx, Leu, and Lys. Both proteins lack sulfur-containing amino acids. The protein is glycosylated, and inhibition of EIX synthesis by tunicamycin suggests that at least some of the sugar moieties are linked to asparagine residues. EIX appears to be synthesized initially as a 25 kilodalton precursor protein that is processed to 22 kilodalton during secretion.

Full text

PDF
316

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey B. A., Dean J. F., Anderson J. D. An Ethylene Biosynthesis-Inducing Endoxylanase Elicits Electrolyte Leakage and Necrosis in Nicotiana tabacum cv Xanthi Leaves. Plant Physiol. 1990 Dec;94(4):1849–1854. doi: 10.1104/pp.94.4.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carpita N. C. Limiting diameters of pores and the surface structure of plant cell walls. Science. 1982 Nov 19;218(4574):813–814. doi: 10.1126/science.218.4574.813. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Ecker J. R., Davis R. W. Plant defense genes are regulated by ethylene. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5202–5206. doi: 10.1073/pnas.84.15.5202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Farmer E. E., Helgeson J. P. An Extracellular Protein from Phytophthora parasitica var nicotianae Is Associated with Stress Metabolite Accumulation in Tobacco Callus. Plant Physiol. 1987 Nov;85(3):733–740. doi: 10.1104/pp.85.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuchs Y., Anderson J. D. Purification and characterization of ethylene inducing proteins from cellulysin. Plant Physiol. 1987 Jul;84(3):732–736. doi: 10.1104/pp.84.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fuchs Y., Saxena A., Gamble H. R., Anderson J. D. Ethylene biosynthesis-inducing protein from cellulysin is an endoxylanase. Plant Physiol. 1989 Jan;89(1):138–143. doi: 10.1104/pp.89.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ishii S. Factors Influencing Protoplast Viability of Suspension-Cultured Rice Cells during Isolation Process. Plant Physiol. 1988 Sep;88(1):26–29. doi: 10.1104/pp.88.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Janson J. C. Adsorption phenomena on Sephadex. J Chromatogr. 1967 May;28(1):12–20. doi: 10.1016/s0021-9673(01)85920-3. [DOI] [PubMed] [Google Scholar]
  10. Labavitch J. M., Greve L. C. Cell Wall Metabolism in Ripening Fruit : III. Purification of an Endo-beta-1,4-xylanase that Degrades a Structural Polysaccharide of Pear Fruit Cell Walls. Plant Physiol. 1983 Jul;72(3):668–673. doi: 10.1104/pp.72.3.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lotan T., Fluhr R. Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a non-ethylene pathway for induction. Plant Physiol. 1990 Jun;93(2):811–817. doi: 10.1104/pp.93.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morosoli R., Lécher P., Durand S. Effect of tunicamycin on xylanase secretion in the yeast Cryptococcus albidus. Arch Biochem Biophys. 1988 Aug 15;265(1):183–189. doi: 10.1016/0003-9861(88)90383-9. [DOI] [PubMed] [Google Scholar]
  13. Paice M. G., Jurasek L., Carpenter M. R., Smillie L. B. Production, characterization, and partial amino acid sequence of xylanase A from Schizophyllum commune. Appl Environ Microbiol. 1978 Dec;36(6):802–808. doi: 10.1128/aem.36.6.802-808.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  15. Tong C. B., Labavitch J. M., Yang S. F. The induction of ethylene production from pear cell culture by cell wall fragments. Plant Physiol. 1986 Jul;81(3):929–930. doi: 10.1104/pp.81.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Toppan A., Esquerré-Tugayé M. T. Cell Surfaces in Plant-Microorganism Interactions : IV. Fungal Glycopeptides Which Elicit the Synthesis of Ethylene in Plants. Plant Physiol. 1984 Aug;75(4):1133–1138. doi: 10.1104/pp.75.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wong K. K., Tan L. U., Saddler J. N. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev. 1988 Sep;52(3):305–317. doi: 10.1128/mr.52.3.305-317.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES